Bennett University, Greater Noida, India.
National Institute of Technology Hamirpur, Hamirpur, India.
Phys Eng Sci Med. 2021 Jun;44(2):443-456. doi: 10.1007/s13246-021-00995-3. Epub 2021 Mar 29.
Epilepsy is a disease recognized as the chronic neurological dysfunction of the human brain which is described by the sudden and excessive electrical discharges of the brain cells. Electroencephalogram (EEG) is a prime tool applied for the diagnosis of epilepsy. In this study, a novel and effective approach is introduced to decompose the non-stationary EEG signals using the Fourier decomposition method. The concept of position, velocity, and acceleration has been employed on the EEG signals for feature extraction using [Formula: see text] norms computed from Fourier intrinsic band functions (FIBFs). The proposed scheme comprises three main sections. In the first section, the EEG signal is decomposed into a finite number of FIBFs. In the second stage, the features are extracted from FIBFs and relevant features are selected by using the Kruskal-Wallis test. In the last stage, the significant features are passed on to the support vector machine (SVM) classifier. By applying 10-fold cross-validation, the proposed method provides better results in comparison to the state-of-the-art methods discussed in the literature, with an average classification accuracy of 99.96% and 99.94% for classification of EEG signals from the BONN dataset and the CHB-MIT dataset, respectively. It can be implemented using the computationally efficient fast Fourier transform (FFT) algorithm.
癫痫是一种被认为是人类大脑慢性神经功能障碍的疾病,其特征是脑细胞的突然和过度放电。脑电图 (EEG) 是诊断癫痫的主要工具。在这项研究中,引入了一种新颖而有效的方法,通过傅里叶分解方法分解非平稳 EEG 信号。利用 [公式:见文本] 从傅里叶固有频带函数 (FIBF) 计算得出的范数,对 EEG 信号应用位置、速度和加速度的概念进行特征提取。所提出的方案包括三个主要部分。在第一节中,将 EEG 信号分解为有限数量的 FIBF。在第二阶段,从 FIBF 中提取特征,并通过 Kruskal-Wallis 检验选择相关特征。在最后阶段,将显著特征传递给支持向量机 (SVM) 分类器。通过应用 10 折交叉验证,与文献中讨论的最先进方法相比,该方法提供了更好的结果,在 BONN 数据集和 CHB-MIT 数据集的 EEG 信号分类中,平均分类准确率分别为 99.96%和 99.94%。它可以使用计算效率高的快速傅里叶变换 (FFT) 算法实现。