Suppr超能文献

基于傅里叶分析的脑电信号癫痫发作自动识别的有效方法。

An efficient method for identification of epileptic seizures from EEG signals using Fourier analysis.

机构信息

Bennett University, Greater Noida, India.

National Institute of Technology Hamirpur, Hamirpur, India.

出版信息

Phys Eng Sci Med. 2021 Jun;44(2):443-456. doi: 10.1007/s13246-021-00995-3. Epub 2021 Mar 29.

Abstract

Epilepsy is a disease recognized as the chronic neurological dysfunction of the human brain which is described by the sudden and excessive electrical discharges of the brain cells. Electroencephalogram (EEG) is a prime tool applied for the diagnosis of epilepsy. In this study, a novel and effective approach is introduced to decompose the non-stationary EEG signals using the Fourier decomposition method. The concept of position, velocity, and acceleration has been employed on the EEG signals for feature extraction using [Formula: see text] norms computed from Fourier intrinsic band functions (FIBFs). The proposed scheme comprises three main sections. In the first section, the EEG signal is decomposed into a finite number of FIBFs. In the second stage, the features are extracted from FIBFs and relevant features are selected by using the Kruskal-Wallis test. In the last stage, the significant features are passed on to the support vector machine (SVM) classifier. By applying 10-fold cross-validation, the proposed method provides better results in comparison to the state-of-the-art methods discussed in the literature, with an average classification accuracy of 99.96% and 99.94% for classification of EEG signals from the BONN dataset and the CHB-MIT dataset, respectively. It can be implemented using the computationally efficient fast Fourier transform (FFT) algorithm.

摘要

癫痫是一种被认为是人类大脑慢性神经功能障碍的疾病,其特征是脑细胞的突然和过度放电。脑电图 (EEG) 是诊断癫痫的主要工具。在这项研究中,引入了一种新颖而有效的方法,通过傅里叶分解方法分解非平稳 EEG 信号。利用 [公式:见文本] 从傅里叶固有频带函数 (FIBF) 计算得出的范数,对 EEG 信号应用位置、速度和加速度的概念进行特征提取。所提出的方案包括三个主要部分。在第一节中,将 EEG 信号分解为有限数量的 FIBF。在第二阶段,从 FIBF 中提取特征,并通过 Kruskal-Wallis 检验选择相关特征。在最后阶段,将显著特征传递给支持向量机 (SVM) 分类器。通过应用 10 折交叉验证,与文献中讨论的最先进方法相比,该方法提供了更好的结果,在 BONN 数据集和 CHB-MIT 数据集的 EEG 信号分类中,平均分类准确率分别为 99.96%和 99.94%。它可以使用计算效率高的快速傅里叶变换 (FFT) 算法实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验