Suppr超能文献

具有二维铁电体的多铁性隧道结中的巨磁电阻和隧穿电阻效应

Giant magnetoresistance and tunneling electroresistance in multiferroic tunnel junctions with 2D ferroelectrics.

作者信息

Chen Yancong, Tang Zhiyuan, Dai Minzhi, Luo Xin, Zheng Yue

机构信息

Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China.

State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China.

出版信息

Nanoscale. 2022 Jun 23;14(24):8849-8857. doi: 10.1039/d2nr00785a.

Abstract

Multiferroic tunneling junctions (MFTJs), composed of two magnetic electrodes separated by an ultrathin ferroelectric (FE) thin film as a barrier, have received great attention in multi-functional devices. Recent theoretical and experimental works have revealed that ferroelectric polarization exists at room temperature in two-dimensional ferroelectric (2D FE) materials within the ultrathin thickness. Here we propose a novel MFTJ Ni/bilayer InSe/BN/Ni, in which the resistance of the tunneling spin polarization electrons can be modulated by different magnetization alignments of the electrode and electric polarization direction of the 2D FE InSe layer, leading to multiple tunneling resistance states. The tunneling magnetoresistance (TMR) and electroresistance (TER) of MFTJs are enhanced by the inserted h-BN layer, achieving an ON/OFF TER ratio of 4188% as well as a TMR ratio of 581% with a much lower resistance area. The giant tunneling resistance ratio, multiple resistance states, and ultra-low energy consumption in 2D FE-based MFTJs suggest their great potential in non-destructive non-volatile memories.

摘要

多铁性隧道结(MFTJs)由两个磁性电极组成,中间隔着一层超薄铁电(FE)薄膜作为势垒,在多功能器件中受到了广泛关注。最近的理论和实验研究表明,室温下超薄厚度的二维铁电(2D FE)材料中存在铁电极化。在此,我们提出了一种新型的MFTJ Ni/双层InSe/BN/Ni,其中隧道自旋极化电子的电阻可以通过电极的不同磁化取向和二维FE InSe层的电极化方向进行调制,从而产生多个隧道电阻状态。插入的h-BN层提高了MFTJs的隧道磁电阻(TMR)和电阻(TER),在更低的电阻面积下实现了4188%的开/关TER比以及581%的TMR比。基于二维FE的MFTJs中巨大的隧道电阻比、多个电阻状态和超低能耗表明它们在无损非易失性存储器中具有巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验