Suppr超能文献

自动编码器潜在空间中物理量的优化。

Optimization of physical quantities in the autoencoder latent space.

作者信息

Park S M, Yoon H G, Lee D B, Choi J W, Kwon H Y, Won C

机构信息

Department of Physics, Kyung Hee University, Seoul, 02447, South Korea.

Center for Spintronics, Korea Institute of Science and Technology, Seoul, 02792, South Korea.

出版信息

Sci Rep. 2022 May 30;12(1):9003. doi: 10.1038/s41598-022-13007-5.

Abstract

We propose a strategy for optimizing physical quantities based on exploring in the latent space of a variational autoencoder (VAE). We train a VAE model using various spin configurations formed on a two-dimensional chiral magnetic system. Three optimization algorithms are used to explore the latent space of the trained VAE. The first algorithm, the single-code modification algorithm, is designed for improving the local energetic stability of spin configurations to generate physically plausible spin states. The other two algorithms, the genetic algorithm and the stochastic algorithm, aim to optimize the global physical quantities, such as topological index, magnetization, energy, and directional correlation. The advantage of our method is that various optimization algorithms can be applied in the latent space containing the abstracted representation constructed by the trained VAE model. Our method based on latent space exploration is utilized for efficient physical quantity optimization.

摘要

我们提出了一种基于在变分自编码器(VAE)的潜在空间中进行探索来优化物理量的策略。我们使用在二维手征磁系统上形成的各种自旋构型来训练VAE模型。三种优化算法用于探索训练好的VAE的潜在空间。第一种算法,单编码修改算法,旨在提高自旋构型的局部能量稳定性,以生成物理上合理的自旋态。另外两种算法,遗传算法和随机算法,旨在优化全局物理量,如拓扑指数、磁化强度、能量和方向相关性。我们方法的优点是各种优化算法可以应用于包含由训练好的VAE模型构建的抽象表示的潜在空间。我们基于潜在空间探索的方法用于高效的物理量优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26b8/9151681/c0257d94f6c2/41598_2022_13007_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验