College of International Education, Bohai University, Jinzhou, Liaoning Province, China.
Foundation Department, Liaoning Agriculture and Economy School, Jinzhou, Liaoning Province, China.
PLoS One. 2022 Jun 13;17(6):e0269746. doi: 10.1371/journal.pone.0269746. eCollection 2022.
The accurate prediction of reference crop evapotranspiration is of great significance to climate research and regional agricultural water management. In order to realize the high-precision prediction of ETO in the absence of meteorological data, this study use XGBoost to select key influencing factors and BP algorithm to construct ETO prediction model of 12 meteorological stations in South West China in this study. ACO, CSO and CS algorithms are used to optimize the model and improve the adaptability of the model. The results show that Tmax, n and Ra can be used as the input combination of ETO model construction, and Tmax is the primary factor affecting ETO. ETO model constructed by BP algorithm has good goodness of fit with the ETO calculated by FAO-56 PM and ACO, CSO and CS have significant optimization effect on BP algorithm, among which CSO algorithm has the best optimization ability on BP, with RMSE, R2, MAE, NSE, GPI ranging 0.200-0.377, 0.932-0.984, 0.140-0.261, 0.920-0.984, 1.472-2.000, GPI ranking is 1-23. Therefore, the input combination (Tmax, n and Ra) and CSO-BP model are recommended as a simplified model for ETO prediction in Southwest China.
准确预测参考作物蒸散量对气候研究和区域农业水资源管理具有重要意义。为了在缺乏气象数据的情况下实现蒸散量的高精度预测,本研究使用 XGBoost 选择关键影响因素,使用 BP 算法构建中国西南地区 12 个气象站的蒸散量预测模型。使用 ACO、CSO 和 CS 算法对模型进行优化,提高模型的适应性。结果表明,Tmax、n 和 Ra 可作为蒸散量模型构建的输入组合,Tmax 是影响蒸散量的主要因素。由 BP 算法构建的蒸散量模型与 FAO-56 PM 计算的蒸散量具有良好的拟合度,ACO、CSO 和 CS 对 BP 算法有显著的优化效果,其中 CSO 算法对 BP 的优化能力最强,RMSE、R2、MAE、NSE、GPI 分别在 0.200-0.377、0.932-0.984、0.140-0.261、0.920-0.984、1.472-2.000 之间,GPI 排名为 1-23。因此,推荐输入组合(Tmax、n 和 Ra)和 CSO-BP 模型作为中国西南地区蒸散量预测的简化模型。