Suppr超能文献

脑电微状态序列特征在丙泊酚诱导的脑意识状态改变过程中的表现。

Characteristics of EEG Microstate Sequences During Propofol-Induced Alterations of Brain Consciousness States.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2022;30:1631-1641. doi: 10.1109/TNSRE.2022.3182705. Epub 2022 Jun 21.

Abstract

Monitoring the consciousness states of patients and ensuring the appropriate depth of anesthesia (DOA) is critical for the safe implementation of surgery. In this study, a high-density electroencephalogram (EEG) combined with blood drug concentration and behavioral response indicators was used to monitor propofol-induced sedation and evaluate the alterations in consciousness states. Microstate analysis, which can reflect the semi-stable state of the sub-second activation of the brain functional network, can be used to assess the brain's consciousness states. In this research, the EEG microstate sequences were constructed to compare the characteristics of corresponding sequences. Compared with the baseline (BS) state, the microstate sequences in the moderate sedation (MD) state exhibited higher complexity indexes of the multiscale sample entropy. With respect to the transition probability (TP) of microstates, most microstates tended to be converted into microstate C in the BS state. In contrast, they tended to be converted into microstate F in the MD state. The significant difference between the expected TP and observed TP could lead to the conclusion that hidden layers were present when there were changes in the consciousness states. According to the hidden Markov model, the accuracy of distinguishing the BS and MD states was 80.16%. The characteristics of microstate sequence revealed the variations in the brain states caused by alterations in consciousness states during anesthesia from a new perspective and presented a new idea for monitoring the DOA.

摘要

监测患者的意识状态并确保适当的麻醉深度(DOA)对于安全实施手术至关重要。在这项研究中,使用高密度脑电图(EEG)结合血液药物浓度和行为反应指标来监测异丙酚诱导的镇静,并评估意识状态的变化。微状态分析可以反映大脑功能网络的亚秒级激活的半稳定状态,可用于评估大脑的意识状态。在这项研究中,构建了 EEG 微状态序列以比较相应序列的特征。与基线(BS)状态相比,中度镇静(MD)状态下的微状态序列具有更高的多尺度样本熵复杂度指数。就微状态的转移概率(TP)而言,大多数微状态在 BS 状态下倾向于转换为微状态 C,而在 MD 状态下则倾向于转换为微状态 F。期望 TP 和观察 TP 之间的显著差异表明,当意识状态发生变化时,存在隐藏层。根据隐马尔可夫模型,BS 和 MD 状态的区分准确率为 80.16%。微状态序列的特征从新的角度揭示了麻醉期间意识状态变化引起的大脑状态变化,并为监测 DOA 提供了新的思路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验