Suppr超能文献

心理负荷的动态功能连接相关性

Dynamic functional connectivity correlates of mental workload.

作者信息

Xu Zhongming, Huang Jing, Liu Chuancai, Zhang Qiankun, Gu Heng, Li Xiaoli, Di Zengru, Li Zheng

机构信息

International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, 519087 China.

Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, 519087 China.

出版信息

Cogn Neurodyn. 2024 Oct;18(5):2471-2486. doi: 10.1007/s11571-024-10101-4. Epub 2024 Apr 1.

Abstract

UNLABELLED

Tasks with high mental workload often involve higher cognitive functions of the human brain and complex information flow involving multiple brain regions. However, the dynamics of functional connectivity between brain regions during high mental workload have not been well-studied. We use an analysis approach designed to find repeating network states from gamma-band phase locking value networks built from electroencephalograph data collected while participants engaged in tasks with different levels of mental workload. First, we define network states as results of clustering based on the closeness centrality node-level network metric. Second, we found that the transition between network states is not completely random. And, we found significant differences in network state statistics between low and high mental workload. Third, we found significant correlation between features calculated from the network state sequence and behavioral performance. Finally, we use dynamic network features as input to a support vector machine classifier and obtain cross-participant average decoding accuracy of 69.6%. Our methods provide a new perspective for analyzing the dynamics of electroencephalograph signals and have potential application to the decoding of mental workload level.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s11571-024-10101-4.

摘要

未标注

高心理负荷任务通常涉及人类大脑的高级认知功能以及涉及多个脑区的复杂信息流。然而,高心理负荷期间脑区之间功能连接的动态变化尚未得到充分研究。我们使用一种分析方法,旨在从参与者在进行不同心理负荷水平任务时收集的脑电图数据构建的伽马波段锁相值网络中找到重复的网络状态。首先,我们将网络状态定义为基于接近中心性节点级网络指标的聚类结果。其次,我们发现网络状态之间的转换并非完全随机。并且,我们发现低心理负荷和高心理负荷之间的网络状态统计存在显著差异。第三,我们发现从网络状态序列计算出的特征与行为表现之间存在显著相关性。最后,我们将动态网络特征用作支持向量机分类器的输入,并获得了69.6%的跨参与者平均解码准确率。我们的方法为分析脑电图信号的动态变化提供了新的视角,并在心理负荷水平解码方面具有潜在应用价值。

补充信息

在线版本包含可在10.1007/s11571-024-10101-4获取的补充材料。

相似文献

1
Dynamic functional connectivity correlates of mental workload.心理负荷的动态功能连接相关性
Cogn Neurodyn. 2024 Oct;18(5):2471-2486. doi: 10.1007/s11571-024-10101-4. Epub 2024 Apr 1.
7
Intensive case management for severe mental illness.严重精神疾病的强化个案管理。
Cochrane Database Syst Rev. 2010 Oct 6(10):CD007906. doi: 10.1002/14651858.CD007906.pub2.
10
Sertindole for schizophrenia.用于治疗精神分裂症的舍吲哚。
Cochrane Database Syst Rev. 2005 Jul 20;2005(3):CD001715. doi: 10.1002/14651858.CD001715.pub2.

本文引用的文献

8
Electroencephalography in Evaluating Mental Workload of Gaming.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:845-848. doi: 10.1109/EMBC46164.2021.9629772.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验