Suppr超能文献

多组学特征分析高级别浆液性卵巢癌可实现高精度患者分层。

Multiomic Characterization of High-Grade Serous Ovarian Carcinoma Enables High-Resolution Patient Stratification.

机构信息

Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.

MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.

出版信息

Clin Cancer Res. 2022 Aug 15;28(16):3546-3556. doi: 10.1158/1078-0432.CCR-22-0368.

Abstract

PURPOSE

High-grade serous ovarian carcinoma (HGSOC) is the most common ovarian cancer type; most patients experience disease recurrence that accumulates chemoresistance, leading to treatment failure. Genomic and transcriptomic features have been associated with differential outcome and treatment response. However, the relationship between events at the gene sequence, copy number, and gene-expression levels remains poorly defined.

EXPERIMENTAL DESIGN

We perform multiomic characterization of a large HGSOC cohort (n = 362) with detailed clinical annotation to interrogate the relationship between patient subgroups defined by specific molecular events.

RESULTS

BRCA2-mutant (BRCA2m) and EMSY-overexpressing cases demonstrated prolonged survival [multivariable hazard ratios (HR) 0.40 and 0.51] and significantly higher first- and second-line chemotherapy response rate. CCNE1-gained (CCNE1g) cases demonstrated underrepresentation of FIGO stage IV cases, with shorter survival but no significant difference in treatment response. We demonstrate marked overlap between the TCGA- and Tothill-derived subtypes. IMR/C2 cases displayed higher BRCA1/2m frequency (25.5%, 32.5%) and significantly greater immune cell infiltration, whereas PRO/C5 cases had the highest CCNE1g rate (23.9%, 22.2%) and were uniformly low in immune cell infiltration. The survival benefit for cases with aberrations in homologous recombination repair (HRR) genes was apparent across all transcriptomic subtypes (HR range, 0.48-0.68). There was significant co-occurrence of RB loss and HRR gene aberrations; RB loss was further associated with favorable survival within HRR-aberrant cases (multivariable HR, 0.50).

CONCLUSIONS

These data paint a high-resolution picture of the molecular landscape in HGSOC, better defining patients who may benefit most from specific molecular therapeutics and highlighting those for whom novel treatment strategies are needed to improve outcomes.

摘要

目的

高级别浆液性卵巢癌(HGSOC)是最常见的卵巢癌类型;大多数患者经历疾病复发,从而积累化疗耐药性,导致治疗失败。基因组和转录组特征与不同的预后和治疗反应相关。然而,基因序列、拷贝数和基因表达水平上的事件之间的关系仍未得到很好的定义。

实验设计

我们对具有详细临床注释的大型 HGSOC 队列(n=362)进行了多组学特征分析,以探究由特定分子事件定义的患者亚组之间的关系。

结果

BRCA2 突变(BRCA2m)和 EMSY 过表达病例表现出更长的生存时间[多变量危险比(HR)分别为 0.40 和 0.51]和显著更高的一线和二线化疗反应率。CCNE1 获得(CCNE1g)病例表现为 FIGO 分期 IV 期病例的代表性不足,生存时间较短,但治疗反应无显著差异。我们证明了 TCGA 和 Tothill 衍生的亚型之间存在明显的重叠。IMR/C2 病例显示出更高的 BRCA1/2m 频率(25.5%,32.5%)和显著更高的免疫细胞浸润,而 PRO/C5 病例的 CCNE1g 率最高(23.9%,22.2%),且免疫细胞浸润普遍较低。同源重组修复(HRR)基因异常病例的生存获益在所有转录组亚型中均明显(HR 范围,0.48-0.68)。RB 缺失和 HRR 基因异常显著共存;RB 缺失与 HRR 异常病例的生存获益进一步相关(多变量 HR,0.50)。

结论

这些数据描绘了 HGSOC 分子景观的高分辨率图像,更好地定义了最有可能从特定分子治疗中受益的患者,并强调了需要新的治疗策略来改善预后的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5210/9662902/397d2ca7b527/3546fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验