Laboratório de Genomas e Populações de Plantas, Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil; Programa de Pós-graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil.
Laboratório de Genomas e Populações de Plantas, Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil; Programa de Pós-graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil; Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil; Programa INCT Plant Stress Biotech, EMBRAPA, CENARGEN, Brasilia, DF, Brazil.
Plant Sci. 2022 Aug;321:111342. doi: 10.1016/j.plantsci.2022.111342. Epub 2022 May 27.
The regulation of protease activity is a critical factor for the physiological balance during plant growth and development. Among the proteins involved in controlling protease activity are the cystatins, well-described inhibitors of cysteine proteases present in viruses, bacteria and most Eukaryotes. Plant cystatins, commonly called phytocystatins, display unique structural and functional diversity and are classified according to their molecular weight as type-I, -II, and -III. Their gene structure is highly conserved across Viridiplantae and provides insights into their evolutionary relationships. Many type-I phytocystatins with introns share sequence similarities with type-II phytocystatins. New data shows that they could have originated from recent losses of the carboxy-terminal extension present in type-II phytocystatins. Intronless type-I phytocystatins originated from a single event shared by flowering plants. Pieces of evidence show multiple events of gene duplications, intron losses, and gains throughout the expansion and diversity of the phytocystatin family. Gene duplication events in Gymnosperms and Eudicots resulted in inhibitors with amino acid substitutions that may modify their interaction with target proteases and other proteins. This review brings a phylogenomic analysis of plant cystatin evolution and contributes to a broader understanding of their origins. A complete functional genomic analysis among phytocystatins and their roles in plant development and responses to abiotic and biotic stresses remains a question to be fully solved.
蛋白酶活性的调节是植物生长发育过程中生理平衡的关键因素。在参与控制蛋白酶活性的蛋白质中,有一类是半胱氨酸蛋白酶抑制剂,即众所周知的存在于病毒、细菌和大多数真核生物中的胱抑素。植物胱抑素通常被称为植物胱蛋白酶抑制剂,具有独特的结构和功能多样性,并根据其分子量分为 I 型、II 型和 III 型。它们的基因结构在整个绿藻门中高度保守,为它们的进化关系提供了线索。许多带有内含子的 I 型植物胱蛋白酶抑制剂与 II 型植物胱蛋白酶抑制剂具有序列相似性。新的数据表明,它们可能是由于 II 型植物胱蛋白酶抑制剂羧基末端延伸的丢失而产生的。无内含子的 I 型植物胱蛋白酶抑制剂起源于开花植物共有的单一事件。有证据表明,在植物胱蛋白酶抑制剂家族的扩张和多样化过程中,发生了多次基因复制、内含子丢失和获得事件。裸子植物和双子叶植物中的基因复制事件导致抑制剂发生氨基酸取代,可能改变它们与靶蛋白酶和其他蛋白质的相互作用。本综述对植物胱抑素进化进行了系统发育分析,有助于更全面地了解其起源。植物胱蛋白酶抑制剂的完整功能基因组分析及其在植物发育以及对非生物和生物胁迫的反应中的作用仍然是一个有待充分解决的问题。