Suppr超能文献

通过剂量调制电子束光刻和纳米压印技术制造的柱状结构 3D 入口,用于被动、无堵塞的纳流控器件中的 DNA 分析。

Pillar-structured 3D inlets fabricated by dose-modulated e-beam lithography and nanoimprinting for DNA analysis in passive, clogging-free, nanofluidic devices.

机构信息

Universität Hamburg, Institute of Nanostructure and Solid State Physics, HARBOR Bldg 610, Luruper Chaussee 149, Hamburg D-22761, Germany.

Hamburg Centre for Ultrafast Imaging, Germany.

出版信息

Nanotechnology. 2022 Jul 1;33(38). doi: 10.1088/1361-6528/ac780d.

Abstract

We present the fabrication of three-dimensional inlets with gradually decreasing widths and depths and with nanopillars on the slope, all defined in just one lithography step. In addition, as an application, we show how these micro- and nanostructures can be used for micro- and nanofluidics and lab-on-a-chip devices to facilitate the flow and analyze single molecules of DNA. For the fabrication of 3D inlets in a single layer process, dose-modulated electron beam lithography was used, producing depths between 750 nm and 50 nm along a 30 μm long inlet, which is additionally structured with nanometer-scale pillars randomly distributed on top, as a result of incomplete exposure and underdevelopment of the resist. The fabrication conditions affect the slope of the inlet, the nanopillar density and coverage. The key parameters are the dose used for the electron beam exposure and the development conditions, like the developer's dilution, stirring and development time. The 3D inlets with nanostructured pillars were integrated into fluidic devices, acting as a transition between micro and nanofluidic structures for pre-stretching and unfolding DNA molecules, avoiding the intrusion of folded molecules and clogging the analysis channel. After patterning these structures in silicon, they can be replicated in polymer by UV nanoimprinting. We show here how the inlets with pillars slow down the molecules before they enter the nanochannels, resulting in a 3-fold decrease in speed, which would translate to an improvement in the resolution for DNA optical mapping.

摘要

我们展示了一种制造具有逐渐变窄宽度和深度的三维入口的方法,并且在斜坡上具有纳米柱,所有这些都仅在一个光刻步骤中定义。此外,作为应用,我们展示了这些微纳结构如何用于微纳流控和片上实验室设备,以促进流动和分析单个 DNA 分子。为了在单层工艺中制造 3D 入口,使用了剂量调制电子束光刻,在 30 μm 长的入口处产生了 750nm 至 50nm 的深度,此外,顶部还具有随机分布的纳米级柱子结构,这是由于抗蚀剂不完全曝光和欠曝光造成的。制造条件会影响入口的斜率、纳米柱的密度和覆盖率。关键参数是电子束曝光使用的剂量以及开发条件,如显影剂的稀释度、搅拌和开发时间。具有纳米柱结构的 3D 入口被集成到流体设备中,作为微纳流道结构之间的过渡,用于预拉伸和展开 DNA 分子,避免折叠分子的侵入和堵塞分析通道。在硅上对这些结构进行图案化后,它们可以通过紫外纳米压印在聚合物中复制。我们在这里展示了具有纳米柱的入口如何在分子进入纳米通道之前减缓其速度,从而将速度降低 3 倍,这将转化为 DNA 光学映射分辨率的提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验