Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
Small. 2012 Sep 24;8(18):2787-801. doi: 10.1002/smll.201200240. Epub 2012 Jul 9.
With the development of nanotechnology, great progress has been made in the fabrication of nanochannels. Nanofluidic biochips based on nanochannel structures allow biomolecule transport, bioseparation, and biodetection. The domain applications of nanofluidic biochips with nanochannels are DNA stretching and separation. In this Review, the general fabrication methods for nanochannel structures and their applications in DNA analysis are discussed. These representative fabrication approaches include conventional photolithography, interference lithography, electron-beam lithography, nanoimprint lithography and polymer nanochannels. Other nanofabrication methods used to fabricate unique nanochannels, including sub-10-nm nanochannels, single nanochannels, and vertical nanochannels, are also mentioned. These nanofabrication methods provide an effective way to form nanoscale channel structures for nanofluidics and biosensor devices for DNA separation, detection, and sensing. The broad applications of nanochannels and future perspectives are also discussed.
随着纳米技术的发展,纳米通道的制造取得了巨大的进步。基于纳米通道结构的纳流控生物芯片允许生物分子的传输、分离和检测。具有纳米通道的纳流控生物芯片的领域应用包括 DNA 的拉伸和分离。在这篇综述中,讨论了纳米通道结构的一般制造方法及其在 DNA 分析中的应用。这些代表性的制造方法包括传统的光刻、干涉光刻、电子束光刻、纳米压印光刻和聚合物纳米通道。还提到了其他用于制造独特纳米通道的纳米制造方法,包括亚 10nm 纳米通道、单纳米通道和垂直纳米通道。这些纳米制造方法为纳流控和用于 DNA 分离、检测和传感的生物传感器设备形成纳米级通道结构提供了一种有效的方法。还讨论了纳米通道的广泛应用和未来展望。
Biosens Bioelectron. 2015-5-12
ACS Nano. 2012-8-27
Lab Chip. 2013-8-7
Lab Chip. 2010-2-23
Anal Sci. 2025-6-12
Anal Chem. 2025-4-29
J Chromatogr A. 2022-11-8
Nanoscale Adv. 2022-1-6
Adv Mater. 2021-3
Polymers (Basel). 2019-2-25