Suppr超能文献

抗病毒纳米药物:表面工程化的相互作用和病毒选择性活性。

Antiviral nanopharmaceuticals: Engineered surface interactions and virus-selective activity.

机构信息

Department of Materials Science and Engineering, Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida, USA.

College of Medicine, Nanoscience Technology Center, Biionix Cluster, University of Central Florida, Orlando, Florida, USA.

出版信息

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022 Sep;14(5):e1823. doi: 10.1002/wnan.1823. Epub 2022 Jun 13.

Abstract

The COVID-19 pandemic has inspired large research investments from the global scientific community in the study of viral properties and antiviral technologies (e.g., self-cleaning surfaces, virucides, antiviral drugs, and vaccines). Emerging viruses are a constant threat due to the substantial variation in viral structures, limiting the potential for expanded broad-spectrum antiviral agent development, and the complexity of targeting multiple and diverse viral species with unique characteristics involving their virulence. Multiple, more infectious variants of SARS-CoV2 (e.g., Delta, Omicron) have already appeared, necessitating research into versatile, robust control strategies in response to the looming threat of future viruses. Nanotechnology and nanomaterials have played a vital role in addressing current viral threats, from mRNA-based vaccines to nanoparticle-based drugs and nanotechnology enhanced disinfection methods. Rapid progress in the field has prompted a review of the current literature primarily focused on nanotechnology-based virucides and antivirals. In this review, a brief description of antiviral drugs is provided first as background with most of the discussion focused on key design considerations for high-efficacy antiviral nanomaterials (e.g., nanopharmaceuticals) as determined from published studies as well as related modes of biological activity. Insights into potential future research directions are also provided with a section devoted specifically to the SARS-CoV2 virus. This article is categorized under: Toxicology and Regulatory Issues in Nanomediciney > Toxicology of Nanomaterials Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease.

摘要

新冠疫情激发了来自全球科学界对病毒特性和抗病毒技术(例如自清洁表面、病毒清除剂、抗病毒药物和疫苗)的大量研究投资。由于病毒结构的巨大差异,新兴病毒是一个持续存在的威胁,这限制了广谱抗病毒药物开发的潜力,也增加了针对具有独特特征的多种不同病毒物种进行靶向治疗的复杂性,这些特征涉及它们的毒力。已经出现了多种更具传染性的 SARS-CoV2 变体(例如,Delta、Omicron),这就需要研究多功能、强大的控制策略,以应对未来病毒的潜在威胁。纳米技术和纳米材料在应对当前的病毒威胁方面发挥了至关重要的作用,从基于 mRNA 的疫苗到基于纳米颗粒的药物和纳米技术增强的消毒方法。该领域的快速进展促使人们对当前文献进行了回顾,主要集中在基于纳米技术的病毒清除剂和抗病毒药物上。在这篇综述中,首先简要描述了抗病毒药物,作为背景知识,大部分讨论都集中在高效抗病毒纳米材料(例如纳米药物)的关键设计考虑因素上,这些因素是根据已发表的研究以及相关的生物学活性模式确定的。本文还提供了对未来潜在研究方向的见解,并专门针对 SARS-CoV2 病毒开辟了一个部分。本文属于以下类别:纳米医学中的毒理学和监管问题 > 纳米材料的毒理学 治疗方法和药物发现 > 用于传染病的纳米医学 治疗方法和药物发现 > 用于呼吸道疾病的纳米医学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验