Suppr超能文献

通过联合癌症恶病质和肿瘤负担预测晚期非小细胞肺癌一线免疫治疗的疗效。

Predicting the efficacy of first-line immunotherapy by combining cancer cachexia and tumor burden in advanced non-small cell lung cancer.

机构信息

Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan.

Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.

出版信息

Thorac Cancer. 2022 Jul;13(14):2064-2074. doi: 10.1111/1759-7714.14529. Epub 2022 Jun 13.

Abstract

BACKGROUND

Cancer cachexia and tumor burden predict efficacies of programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors and chemotherapy or pembrolizumab in non-small cell lung cancer (NSCLC). There are no predictive models that simultaneously assess cancer cachexia and tumor burden.

METHODS

In the present retrospective study, we reviewed the medical records of patients with advanced NSCLC who received cancer immunotherapy as first-line systemic therapy. Clinical immune predictive scores were defined according to multivariate analysis of progression-free survival (PFS) and overall survival (OS).

RESULTS

A total of 157 patients were included in the present study (75 treated with PD-1/PD-L1 inhibitors + chemotherapy; 82, pembrolizumab monotherapy). Multivariate analysis for PFS revealed that PD-L1 tumor proportion scores <50%, a total target lesion diameter ≥76 mm, and cancer cachexia were independently associated with poor PFS. Multivariate analysis for OS revealed that ≥4 metastases and cancer cachexia were significantly associated with poor OS. In the immune predictive model, the median PFS was 21.7 months in the low-risk group (N = 41); 7.6 in the medium-risk group (N = 64); and 3.0 in the high-risk group (N = 47). The median OS were not reached, 22.4 and 9.1 months respectively. Our immune predictive model was significantly associated with PFS (p < 0.001) and OS (p < 0.001).

CONCLUSION

We proposed the immune predictive model, including tumor burden and cancer cachexia, which may predict the efficacy and survival outcome of first-line immunotherapy in advanced NSCLC.

摘要

背景

癌症恶病质和肿瘤负担可预测程序性细胞死亡受体-1(PD-1)/程序性死亡配体 1(PD-L1)抑制剂和化疗或帕博利珠单抗在非小细胞肺癌(NSCLC)中的疗效。目前尚无同时评估癌症恶病质和肿瘤负担的预测模型。

方法

本回顾性研究纳入了接受癌症免疫疗法作为一线全身治疗的晚期 NSCLC 患者的病历。根据无进展生存期(PFS)和总生存期(OS)的多变量分析,定义了临床免疫预测评分。

结果

本研究共纳入 157 例患者(75 例接受 PD-1/PD-L1 抑制剂+化疗;82 例接受帕博利珠单抗单药治疗)。PFS 的多变量分析显示,PD-L1 肿瘤比例评分<50%、总靶病灶直径≥76mm 和癌症恶病质与较差的 PFS 独立相关。OS 的多变量分析显示,≥4 个转移灶和癌症恶病质与较差的 OS 显著相关。在免疫预测模型中,低危组(N=41)的中位 PFS 为 21.7 个月;中危组(N=64)为 7.6 个月;高危组(N=47)为 3.0 个月。中位 OS 分别为未达到、22.4 和 9.1 个月。我们的免疫预测模型与 PFS(p<0.001)和 OS(p<0.001)显著相关。

结论

我们提出了包含肿瘤负担和癌症恶病质的免疫预测模型,可能预测晚期 NSCLC 一线免疫治疗的疗效和生存结局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f55/9284192/397843e523c7/TCA-13-2064-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验