Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden.
Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 405 30, Sweden.
J Chem Inf Model. 2022 Jun 27;62(12):2999-3007. doi: 10.1021/acs.jcim.2c00193. Epub 2022 Jun 14.
Peptides are an important modality in drug discovery. While current peptide optimization focuses predominantly on the small number of natural and commercially available non-natural amino acids, the chemical spaces available for small molecule drug discovery are in the billions of molecules. In the present study, we describe the development of a large virtual library of readily synthesizable non-natural amino acids that can power the virtual screening protocols and aid in peptide optimization. To that end, we enumerated nearly 380 thousand amino acids and demonstrated their vast chemical diversity compared to the 20 natural and commercial residues. Furthermore, we selected a diverse ten thousand amino acid subset to validate our virtual screening workflow on the Keap1-Neh2 complex model system. Through in silico mutations of Neh2 peptide residues to those from the virtual library, our docking-based protocol identified a number of possible solutions with a significantly higher predicted affinity toward the Keap1 protein. This protocol demonstrates that the non-natural amino acid chemical space can be massively extended and virtually screened with a reasonable computational cost.
肽是药物发现中的一种重要模式。虽然当前的肽优化主要集中在少数天然和市售的非天然氨基酸上,但小分子药物发现的化学空间可达到数十亿种分子。在本研究中,我们描述了一种易于合成的非天然氨基酸的大型虚拟文库的开发,该文库可用于虚拟筛选方案并辅助肽优化。为此,我们列举了近 38 万个氨基酸,并证明了它们与 20 个天然和商业残基相比具有巨大的化学多样性。此外,我们选择了一个多样化的一万个氨基酸子集,以在 Keap1-Neh2 复合物模型系统上验证我们的虚拟筛选工作流程。通过对 Neh2 肽残基进行基于对接的虚拟文库突变,我们的协议确定了一些可能的解决方案,它们与 Keap1 蛋白的预测亲和力显著提高。该协议表明,非天然氨基酸的化学空间可以得到极大的扩展,并以合理的计算成本进行虚拟筛选。