Suppr超能文献

基于蚁群优化的人工智能驱动对接算法的 VirtualFlow Ants-Ultra-Large 虚拟筛选。

VirtualFlow Ants-Ultra-Large Virtual Screenings with Artificial Intelligence Driven Docking Algorithm Based on Ant Colony Optimization.

机构信息

Department of Physics, Harvard University, Cambridge, MA 02138, USA.

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Int J Mol Sci. 2021 May 28;22(11):5807. doi: 10.3390/ijms22115807.

Abstract

The docking program PLANTS, which is based on ant colony optimization (ACO) algorithm, has many advanced features for molecular docking. Among them are multiple scoring functions, the possibility to model explicit displaceable water molecules, and the inclusion of experimental constraints. Here, we add support of PLANTS to VirtualFlow (VirtualFlow Ants), which adds a valuable method for primary virtual screenings and rescoring procedures. Furthermore, we have added support of ligand libraries in the MOL2 format, as well as on the fly conversion of ligand libraries which are in the PDBQT format to the MOL2 format to endow VirtualFlow Ants with an increased flexibility regarding the ligand libraries. The on the fly conversion is carried out with Open Babel and the program SPORES. We applied VirtualFlow Ants to a test system involving KEAP1 on the Google Cloud up to 128,000 CPUs, and the observed scaling behavior is approximately linear. Furthermore, we have adjusted several central docking parameters of PLANTS (such as the speed parameter or the number of ants) and screened 10 million compounds for each of the 10 resulting docking scenarios. We analyzed their docking scores and average docking times, which are key factors in virtual screenings. The possibility of carrying out ultra-large virtual screening with PLANTS via VirtualFlow Ants opens new avenues in computational drug discovery.

摘要

基于蚁群优化(ACO)算法的对接程序 PLANTS 具有许多用于分子对接的高级功能。其中包括多个评分函数、建模显式可移动水分子的可能性,以及包含实验约束。在这里,我们将 PLANTS 支持添加到 VirtualFlow(VirtualFlow Ants)中,这为初步虚拟筛选和重评分过程增加了一种有价值的方法。此外,我们还支持以 MOL2 格式的配体库,以及将以 PDBQT 格式的配体库即时转换为 MOL2 格式,从而提高了 VirtualFlow Ants 在配体库方面的灵活性。即时转换是使用 Open Babel 和程序 SPORES 进行的。我们将 VirtualFlow Ants 应用于一个测试系统,涉及到 Google Cloud 上的 KEAP1 多达 128,000 个 CPU,观察到的扩展行为大致呈线性。此外,我们还调整了 PLANTS 的几个中心对接参数(如速度参数或蚂蚁数量),并对每个 10 个对接场景中的 1000 万个化合物进行了筛选。我们分析了它们的对接评分和平均对接时间,这是虚拟筛选的关键因素。通过 VirtualFlow Ants 使用 PLANTS 进行超大规模虚拟筛选的可能性为计算药物发现开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b42/8199267/09067e2a4846/ijms-22-05807-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验