Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
Research Initiative for Supra-Materials, Shinshu University, Wakasato, Nagano 380-8553, Japan.
Acc Chem Res. 2022 Jul 5;55(13):1796-1808. doi: 10.1021/acs.accounts.2c00063. Epub 2022 Jun 14.
Bioinspired organic/inorganic synthetic composites have been studied as high-performance and functional materials. In nature, biominerals such as pearls, teeth, and bones are self-organized organic/inorganic composites. The inorganic components are composed of calcium carbonate (CaCO) and hydroxyapatite (HAp), while the organic components consist of peptides and polysaccharides. These composites are used as structural materials in hard biological tissues. Biominerals do not show significantly higher performances than synthetic composites such as glass-fiber- or carbon-fiber-reinforced plastics. However, biominerals consist of environmentally friendly and biocompatible components that are prepared under mild conditions. Moreover, they form elaborate nanostructures and self-organized hierarchical structures. Much can be learned about material design from these biomineral-based hierarchical and nanostructured composites to assist in the preparation of functional materials.Inspired by these biological hard tissues, we developed nanostructured thin films and bulk hybrid crystals through the self-organization of organic polymers and inorganic crystals of CaCO or HAp. In biomineralization, the combination of insoluble components and soluble acidic macromolecules controls the crystallization process. We have shown that poly(acrylic acid) (PAA) or acidic peptides called polymer additives induce the formation of thin film crystals of CaCO or HAp by cooperation with insoluble organic templates such as chitin and synthetic polymers bearing the OH group. Moreover, we recently developed CaCO- and HAp-based nanostructured particles with rod and disk shapes. These were obtained in aqueous media using a macromolecular acidic additive, PAA, without using insoluble polymer templates. At appropriate concentrations, the anisotropic particles self-assembled and formed colloidal liquid-crystalline (LC) phases.LC materials are generally composed of organic molecules. They show ordered and mobile states. The addition of stimuli-responsive properties to organic rod-like LC molecules led to the successful development of informational displays, which are now widely used. On the other hand, colloidal liquid crystals are colloidal self-assembled dispersions of anisotropic organic and inorganic nano- and micro-objects. For example, polysaccharide whiskers, clay nanosheets, gibbsite plate-shaped particles, and silica rod-shaped particles exhibit colloidal LC states.In this Account, we focused on the material design and hierarchical aspects of biomineral-based colloidal LC polymer/inorganic composites. We describe the design and preparation, nanostructures, and self-assembled behavior of these new bioinspired and biocompatible self-organized materials. The characterization results for these self-assembled nanostructured colloidal liquid crystals found using high-resolution transmission electron microscopy, small-angle X-ray scattering, and neutron scattering and rheological measurements are also reported. The functions of these biomineral-inspired liquid crystals are presented. Because these biomineral-based LC colloidal liquid crystals can be prepared under mild and aqueous conditions and they consist of environmentally friendly and biocompatible components, new functions are expected for these materials.
受生物启发的有机/无机合成复合材料已被研究为高性能和功能材料。在自然界中,珍珠、牙齿和骨骼等生物矿化材料是自组织的有机/无机复合材料。无机成分由碳酸钙 (CaCO) 和羟基磷灰石 (HAp) 组成,而有机成分由肽和多糖组成。这些复合材料用作硬组织的结构材料。生物矿化材料并不比玻璃纤维或碳纤维增强塑料等合成复合材料具有更高的性能。然而,生物矿化材料由在温和条件下制备的环保和生物相容的成分组成。此外,它们形成精细的纳米结构和自组织的层次结构。从这些基于生物矿化的分层和纳米结构复合材料中,可以学到很多关于材料设计的知识,以帮助制备功能性材料。受这些生物硬组织的启发,我们通过有机聚合物和 CaCO 或 HAp 无机晶体的自组织开发了纳米结构薄膜和块状杂化晶体。在生物矿化过程中,不溶性成分和可溶性酸性大分子的结合控制着结晶过程。我们已经表明,多(丙烯酸) (PAA) 或称为聚合物添加剂的酸性肽通过与不溶性有机模板(如甲壳素和带有 OH 基团的合成聚合物)合作,诱导 CaCO 或 HAp 薄膜晶体的形成。此外,我们最近开发了具有棒状和盘状形状的基于 CaCO 和 HAp 的纳米结构颗粒。这些是在含有高分子酸性添加剂 PAA 的水溶液中制备的,而无需使用不溶性聚合物模板。在适当的浓度下,各向异性颗粒自组装并形成胶体液晶 (LC) 相。LC 材料通常由有机分子组成。它们表现出有序和可移动的状态。向有机棒状 LC 分子添加响应性刺激的性质导致信息显示的成功开发,现在已广泛使用。另一方面,胶体液晶是各向异性有机和无机纳米和微物体的胶体自组装分散体。例如,多糖晶须、粘土纳米片、水铝石板状颗粒和硅酸钠棒状颗粒表现出胶体 LC 状态。在本报告中,我们重点介绍了基于生物矿化的胶体 LC 聚合物/无机复合材料的材料设计和层次结构方面。我们描述了这些新的仿生和生物相容的自组织材料的设计和制备、纳米结构和自组装行为。还报告了使用高分辨率透射电子显微镜、小角 X 射线散射和中子散射以及流变测量对这些自组装纳米结构胶体液晶进行的表征结果。还介绍了这些受生物矿化启发的液晶的功能。由于这些基于生物矿化的 LC 胶体液晶可以在温和的水溶液条件下制备,并且由环保和生物相容的成分组成,因此预计这些材料将具有新的功能。