Wei Chao, Lin Wansheng, Liang Shaofeng, Chen Mengjiao, Zheng Yuanjin, Liao Xinqin, Chen Zhong
Department of Electronic Science, Xiamen University, Xiamen, 361005, People's Republic of China.
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
Nanomicro Lett. 2022 Jun 14;14(1):131. doi: 10.1007/s40820-022-00875-9.
Carbon-based gradient resistance element structure is proposed for the construction of multifunctional touch sensor, which will promote wide detection and recognition range of multiple mechanical stimulations. Multifunctional touch sensor with gradient resistance element and two electrodes is demonstrated to eliminate signals crosstalk and prevent interference during position sensing for human-machine interactions. Biological sensing interface based on a deep-learning-assisted all-in-one multipoint touch sensor enables users to efficiently interact with virtual world. Human-machine interactions using deep-learning methods are important in the research of virtual reality, augmented reality, and metaverse. Such research remains challenging as current interactive sensing interfaces for single-point or multipoint touch input are trapped by massive crossover electrodes, signal crosstalk, propagation delay, and demanding configuration requirements. Here, an all-in-one multipoint touch sensor (AIOM touch sensor) with only two electrodes is reported. The AIOM touch sensor is efficiently constructed by gradient resistance elements, which can highly adapt to diverse application-dependent configurations. Combined with deep learning method, the AIOM touch sensor can be utilized to recognize, learn, and memorize human-machine interactions. A biometric verification system is built based on the AIOM touch sensor, which achieves a high identification accuracy of over 98% and offers a promising hybrid cyber security against password leaking. Diversiform human-machine interactions, including freely playing piano music and programmatically controlling a drone, demonstrate the high stability, rapid response time, and excellent spatiotemporally dynamic resolution of the AIOM touch sensor, which will promote significant development of interactive sensing interfaces between fingertips and virtual objects.
本文提出了一种基于碳的梯度电阻元件结构,用于构建多功能触摸传感器,这将扩大对多种机械刺激的检测和识别范围。实验证明,具有梯度电阻元件和两个电极的多功能触摸传感器,在人机交互的位置传感过程中,能够消除信号串扰并防止干扰。基于深度学习辅助的一体化多点触摸传感器的生物传感界面,使用户能够与虚拟世界进行高效交互。在虚拟现实、增强现实和元宇宙的研究中,采用深度学习方法进行人机交互具有重要意义。然而,目前用于单点或多点触摸输入的交互式传感界面,存在大量交叉电极、信号串扰、传播延迟以及配置要求苛刻等问题,使得此类研究仍具有挑战性。在此,本文报道了一种仅带有两个电极的一体化多点触摸传感器(AIOM触摸传感器)。该AIOM触摸传感器由梯度电阻元件高效构建而成,能够高度适应各种依赖于应用的配置。结合深度学习方法,AIOM触摸传感器可用于识别、学习和记忆人机交互。基于该AIOM触摸传感器构建了一个生物特征验证系统,其识别准确率高达98%以上,为防止密码泄露提供了一种有前景的混合网络安全保障。包括自由弹奏钢琴音乐和以编程方式控制无人机在内的多种人机交互方式,展示了AIOM触摸传感器的高稳定性、快速响应时间以及出色的时空动态分辨率,这将推动指尖与虚拟物体之间交互式传感界面的重大发展。