Yan Ke, Lv Hongwu, Wen Jie, Guo Yichen, Xu Yong, Liu Bin
IEEE/ACM Trans Comput Biol Bioinform. 2023 Mar-Apr;20(2):1337-1344. doi: 10.1109/TCBB.2022.3183018. Epub 2023 Apr 3.
Therapeutic peptide prediction is critical for drug development and therapeutic therapy. Researchers have developed several computational methods to identify different therapeutic peptide types. However, most computational methods focus on identifying the specific type of therapeutic peptides and fail to accurately predict all types of therapeutic peptides. Moreover, it is still challenging to utilize different properties features to predict the therapeutic peptides. In this study, a novel stacking framework PreTP-Stack is proposed for predicting different types of therapeutic peptide. PreTP-Stack is constructed based on ten different features and four predictors (Random Forest, Linear Discriminant Analysis, XGBoost and Support Vector Machine). Then the proposed method constructs an auto-weighted multi-view learning model as a final meta-classifier to enhance the performance of the basic models. Experimental results showed that the proposed method achieved better or highly comparable performance with the state-of-the-art methods for predicting eight types of therapeutic peptides A user-friendly web-server predictor is available at http://bliulab.net/PreTP-Stack.
治疗性肽预测对于药物开发和治疗至关重要。研究人员已经开发了几种计算方法来识别不同类型的治疗性肽。然而,大多数计算方法专注于识别特定类型的治疗性肽,无法准确预测所有类型的治疗性肽。此外,利用不同的属性特征来预测治疗性肽仍然具有挑战性。在本研究中,提出了一种新颖的堆叠框架PreTP-Stack用于预测不同类型的治疗性肽。PreTP-Stack基于十种不同特征和四个预测器(随机森林、线性判别分析、XGBoost和支持向量机)构建。然后,所提出的方法构建了一个自动加权多视图学习模型作为最终的元分类器,以提高基本模型的性能。实验结果表明,所提出的方法在预测八种类型的治疗性肽时与现有最先进方法相比取得了更好或高度可比的性能。可在http://bliulab.net/PreTP-Stack获得一个用户友好的网络服务器预测器。