School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China.
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.
Bioinformatics. 2023 Apr 3;39(4). doi: 10.1093/bioinformatics/btad125.
Therapeutic peptides play an important role in immune regulation. Recently various therapeutic peptides have been used in the field of medical research, and have great potential in the design of therapeutic schedules. Therefore, it is essential to utilize the computational methods to predict the therapeutic peptides. However, the therapeutic peptides cannot be accurately predicted by the existing predictors. Furthermore, chaotic datasets are also an important obstacle of the development of this important field. Therefore, it is still challenging to develop a multi-classification model for identification of therapeutic peptides and their types.
In this work, we constructed a general therapeutic peptide dataset. An ensemble-learning method named PreTP-2L was developed for predicting various therapeutic peptide types. PreTP-2L consists of two layers. The first layer predicts whether a peptide sequence belongs to therapeutic peptide, and the second layer predicts if a therapeutic peptide belongs to a particular species.
A user-friendly webserver PreTP-2L can be accessed at http://bliulab.net/PreTP-2L.
治疗性肽在免疫调节中起着重要作用。最近,各种治疗性肽已被应用于医学研究领域,在治疗方案的设计中有很大的潜力。因此,利用计算方法来预测治疗性肽是非常必要的。然而,现有的预测器并不能准确地预测治疗性肽。此外,混沌数据集也是该重要领域发展的一个重要障碍。因此,开发用于识别治疗性肽及其类型的多分类模型仍然具有挑战性。
在这项工作中,我们构建了一个通用的治疗性肽数据集。开发了一种名为 PreTP-2L 的集成学习方法,用于预测各种治疗性肽类型。PreTP-2L 由两层组成。第一层预测肽序列是否属于治疗性肽,第二层预测治疗性肽是否属于特定物种。
可通过 http://bliulab.net/PreTP-2L 访问用户友好的 PreTP-2L 网络服务器。