Weymuth Thomas, Reiher Markus
Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
Phys Chem Chem Phys. 2022 Jun 22;24(24):14692-14698. doi: 10.1039/d2cp01725c.
Every practical method to solve the Schrödinger equation for interacting many-particle systems introduces approximations. Such methods are therefore plagued by systematic errors. For computational chemistry, it is decisive to quantify the specific error for some system under consideration. Traditionally, the primary way for such an error assessment has been benchmarking data, usually taken from the literature. However, their transferability to a specific molecular system, and hence, the reliability of the traditional approach always remains uncertain to some degree. In this communication, we elaborate on the shortcomings of this traditional way of static benchmarking by exploiting statistical analyses using one of the largest quantum chemical benchmark sets available. We demonstrate the uncertainty of error estimates in the light of the choice of reference data selected for a benchmark study. To alleviate the issues with static benchmarks, we advocate to rely instead on a rolling and system-focused approach for rigorously quantifying the uncertainty of a quantum chemical result.
求解相互作用多粒子系统薛定谔方程的每一种实用方法都会引入近似。因此,这类方法存在系统误差。对于计算化学而言,量化所考虑的某个系统的特定误差至关重要。传统上,进行这种误差评估的主要方式是使用通常从文献中获取的基准数据。然而,这些数据向特定分子系统的可转移性,以及传统方法的可靠性在某种程度上始终存在不确定性。在本通讯中,我们通过利用现有最大的量子化学基准集之一进行统计分析,阐述了这种传统静态基准测试方法的缺点。我们根据为基准研究选择的参考数据的选择,展示了误差估计的不确定性。为了缓解静态基准测试的问题,我们主张转而采用一种滚动且以系统为重点的方法,以严格量化量子化学结果的不确定性。