Connect Care and Personal Health, Philips Research North America, 222 Jacobs Street, Cambridge, MA, 02141, USA.
Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA.
Sci Rep. 2022 Jun 14;12(1):9853. doi: 10.1038/s41598-022-13583-6.
Patients supported by mechanical ventilation require frequent invasive blood gas samples to monitor and adjust the level of support. We developed a transparent and novel blood gas estimation model to provide continuous monitoring of blood pH and arterial CO in between gaps of blood draws, using only readily available noninvasive data sources in ventilated patients. The model was trained on a derivation dataset (1,883 patients, 12,344 samples) from a tertiary pediatric intensive care center, and tested on a validation dataset (286 patients, 4030 samples) from the same center obtained at a later time. The model uses pairwise non-linear interactions between predictors and provides point-estimates of blood gas pH and arterial CO along with a range of prediction uncertainty. The model predicted within Clinical Laboratory Improvement Amendments of 1988 (CLIA) acceptable blood gas machine equivalent in 74% of pH samples and 80% of PCO samples. Prediction uncertainty from the model improved estimation accuracy by 15% by identifying and abstaining on a minority of high-uncertainty samples. The proposed model estimates blood gas pH and CO accurately in a large percentage of samples. The model's abstention recommendation coupled with ranked display of top predictors for each estimation lends itself to real-time monitoring of gaps between blood draws, and the model may help users determine when a new blood draw is required and delay blood draws when not needed.
需要机械通气支持的患者需要频繁进行有创血气采样,以监测和调整支持水平。我们开发了一种透明新颖的血气估算模型,仅使用通气患者中易于获得的无创数据源,在采血间隙之间提供连续的血液 pH 和动脉 CO 监测。该模型在来自三级儿科重症监护中心的一个推导数据集(1883 名患者,12344 个样本)上进行了训练,并在来自同一中心的稍后时间获得的验证数据集(286 名患者,4030 个样本)上进行了测试。该模型使用预测因子之间的成对非线性交互作用,并提供血气 pH 和动脉 CO 的点估计值以及预测不确定性范围。该模型在 74%的 pH 样本和 80%的 PCO 样本中预测值在临床实验室改进修正案 1988 年(CLIA)可接受的血气机等效范围内。通过识别和放弃少数高不确定性样本,模型的预测不确定性提高了 15%的估计准确性。该模型在很大比例的样本中准确估计血气 pH 和 CO。该模型的弃权建议以及每个估计的最佳预测因子的排名显示,可用于实时监测采血间隙,并可帮助用户确定何时需要进行新的采血以及何时不需要采血。