Suppr超能文献

通过离散采样进行受体时间积分。

Receptor time integration via discrete sampling.

作者信息

Malaguti G, Ten Wolde P R

机构信息

AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.

出版信息

Phys Rev E. 2022 May;105(5-1):054406. doi: 10.1103/PhysRevE.105.054406.

Abstract

Living cells can measure chemical concentrations with remarkable accuracy, even though these measurements are inherently noisy due to the stochastic binding of the ligand to the receptor. A widely used mechanism for reducing the sensing error is to increase the effective number of measurements via receptor time integration. This mechanism is implemented via the signaling network downstream of the receptor, yet how it is implemented optimally given constraints on cellular resources such as protein copies and time remains unknown. To address this question, we employ our sampling framework [Govern and ten Wolde, Proc. Natl. Acad. Sci. USA 111, 17486 (2014)PNASA60027-842410.1073/pnas.1411524111] and extend it here to time-varying ligand concentrations. This framework starts from the observation that the signaling network implements the mechanism of time integration by discretely sampling the ligand-binding state of the receptor and storing these states into chemical modification states of the readout molecules downstream. It reveals that the sensing error has two distinct contributions: a sampling error, which is determined by the number of samples, their independence, and their accuracy, and a dynamical error, which depends on the timescale that these samples are generated. We test our previously identified design principle, which states that in an optimally designed system the number of receptors and their integration time, which determine the number of independent concentration measurements at the receptor level, equals the number of readout proteins, which store these measurements. We show that this principle is robust to the dynamics of the input and the relative costs of the receptor and readout proteins: these resources are fundamental and cannot compensate each other.

摘要

活细胞能够以极高的精度测量化学浓度,尽管由于配体与受体的随机结合,这些测量本质上存在噪声。一种广泛使用的减少传感误差的机制是通过受体时间积分增加有效测量次数。这种机制是通过受体下游的信号网络实现的,但在诸如蛋白质拷贝数和时间等细胞资源受限的情况下,它如何实现最优仍不清楚。为了解决这个问题,我们采用了我们的采样框架[Govern和ten Wolde,《美国国家科学院院刊》111, 17486 (2014)PNASA60027 - 842410.1073/pnas.1411524111]并在此将其扩展到随时间变化的配体浓度。这个框架始于这样的观察,即信号网络通过离散采样受体的配体结合状态并将这些状态存储到下游读出分子的化学修饰状态中来实现时间积分机制。它揭示了传感误差有两个不同的来源:一个采样误差,它由样本数量、它们的独立性和准确性决定;一个动态误差,它取决于生成这些样本的时间尺度。我们测试了我们之前确定的设计原则,该原则指出在一个最优设计的系统中,决定受体水平独立浓度测量次数的受体数量及其积分时间,等于存储这些测量值的读出蛋白数量。我们表明,这一原则对于输入的动态变化以及受体和读出蛋白的相对成本具有鲁棒性:这些资源是基本的,不能相互补偿。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验