Mattingly Henry H, Kamino Keita, Ong Jude, Kottou Rafaela, Emonet Thierry, Machta Benjamin B
Center for Computational Biology, Flatiron Institute.
Institute of Molecular Biology, Academia Sinica.
ArXiv. 2024 Nov 27:arXiv:2407.07264v2.
Understanding biological functions requires identifying the physical limits and system-specific constraints that have shaped them. In chemotaxis, gradient-climbing speed is information-limited, bounded by the sensory information they acquire from real-time measurements of their environment. However, it remains unclear what limits this information. Past work conjectured that 's chemosensing is limited by the physics of molecule arrivals at their sensors. Here, we derive the physical limit on behaviorally-relevant information, and then perform single-cell experiments to quantify how much information 's signaling pathway encodes. We find that encode two orders of magnitude less information than the physical limit due to their stochastic signal processing. Thus, system-specific constraints, rather than the physical limit, have shaped the evolution of this canonical sensory-motor behavior.
理解生物功能需要确定塑造这些功能的物理极限和特定系统的约束条件。在趋化作用中,梯度攀升速度受信息限制,其上限是它们从对环境的实时测量中获取的感官信息。然而,目前尚不清楚是什么限制了这些信息。过去的研究推测,[生物名称]的化学感应受分子到达其传感器的物理过程限制。在这里,我们推导出行为相关信息的物理极限,然后进行单细胞实验,以量化[生物名称]的信号通路编码了多少信息。我们发现,由于其随机信号处理,[生物名称]编码的信息比物理极限少两个数量级。因此,是特定系统的约束条件,而非物理极限,塑造了这种典型的感觉运动行为的进化。