Suppr超能文献

一种结合单位和区域层面数据的弹性网络惩罚小区域模型,用于区域高血压患病率估计。

An elastic net penalized small area model combining unit- and area-level data for regional hypertension prevalence estimation.

作者信息

Burgard J P, Krause J, Münnich R

机构信息

Department of Economic and Social Statistics, Trier University, Trier, Germany.

出版信息

J Appl Stat. 2020 May 14;48(9):1659-1674. doi: 10.1080/02664763.2020.1765323. eCollection 2021.

Abstract

Hypertension is a highly prevalent cardiovascular disease. It marks a considerable cost factor to many national health systems. Despite its prevalence, regional disease distributions are often unknown and must be estimated from survey data. However, health surveys frequently lack in regional observations due to limited resources. Obtained prevalence estimates suffer from unacceptably large sampling variances and are not reliable. Small area estimation solves this problem by linking auxiliary data from multiple regions in suitable regression models. Typically, either unit- or area-level observations are considered for this purpose. But with respect to hypertension, both levels should be used. Hypertension has characteristic comorbidities and is strongly related to lifestyle features, which are unit-level information. It is also correlated with socioeconomic indicators that are usually measured on the area-level. But the level combination is challenging as it requires multi-level model parameter estimation from small samples. We use a multi-level small area model with level-specific penalization to overcome this issue. Model parameter estimation is performed via stochastic coordinate gradient descent. A jackknife estimator of the mean squared error is presented. The methodology is applied to combine health survey data and administrative records to estimate regional hypertension prevalence in Germany.

摘要

高血压是一种高度流行的心血管疾病。它是许多国家卫生系统的一个重要成本因素。尽管其患病率很高,但区域疾病分布往往未知,必须从调查数据中进行估计。然而,由于资源有限,健康调查经常缺乏区域观测数据。所获得的患病率估计值存在不可接受的大抽样方差,不可靠。小区域估计通过在合适的回归模型中链接来自多个区域的辅助数据来解决这个问题。通常,为此目的会考虑单位或区域层面的观测数据。但对于高血压而言,两个层面的数据都应使用。高血压具有特征性的合并症,并且与生活方式特征密切相关,这些都是单位层面的信息。它还与通常在区域层面测量的社会经济指标相关。但这种层面的组合具有挑战性,因为它需要从小样本中进行多层次模型参数估计。我们使用具有特定层面惩罚的多层次小区域模型来克服这个问题。模型参数估计通过随机坐标梯度下降进行。提出了均方误差的刀切估计量。该方法被应用于结合健康调查数据和行政记录来估计德国的区域高血压患病率。

相似文献

本文引用的文献

4
Alcohol-induced hypertension: Mechanism and prevention.酒精性高血压:机制与预防
World J Cardiol. 2014 May 26;6(5):245-52. doi: 10.4330/wjc.v6.i5.245.
5
Type 2 diabetes mellitus and hypertension: an update.2型糖尿病与高血压:最新进展
Endocrinol Metab Clin North Am. 2014 Mar;43(1):103-22. doi: 10.1016/j.ecl.2013.09.005. Epub 2013 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验