Suppr超能文献

物理约束时空建模:利用稀疏的遥感卫星数据生成地表温度的晴空构造。

Physically constrained spatiotemporal modeling: generating clear-sky constructions of land surface temperature from sparse, remotely sensed satellite data.

作者信息

Collins Gavin Q, Heaton Matthew J, Hu Leiqiu

机构信息

Department of Statistics, Brigham Young University, Provo, UT, USA.

Department of Atmospheric Science, University of Alabama in Huntsville, Huntsville, AL, USA.

出版信息

J Appl Stat. 2019 Oct 17;47(8):1439-1459. doi: 10.1080/02664763.2019.1681384. eCollection 2020.

Abstract

Satellite remote-sensing is used to collect important atmospheric and geophysical data at various spatial resolutions, providing insight into spatiotemporal surface and climate variability globally. These observations are often plagued with missing spatial and temporal information of Earth's surface due to (1) cloud cover at the time of a satellite passing and (2) infrequent passing of polar-orbiting satellites. While many methods are available to model missing data in space and time, in the case of land surface temperature (LST) from thermal infrared remote sensing, these approaches generally ignore the temporal pattern called the 'diurnal cycle' which physically constrains temperatures to peak in the early afternoon and reach a minimum at sunrise. In order to infill an LST dataset, we parameterize the diurnal cycle into a functional form with unknown spatiotemporal parameters. Using multiresolution spatial basis functions, we estimate these parameters from sparse satellite observations to reconstruct an LST field with continuous spatial and temporal distributions. These estimations may then be used to better inform scientists of spatiotemporal thermal patterns over relatively complex domains. The methodology is demonstrated using data collected by MODIS on NASA's Aqua and Terra satellites over both Houston, TX and Phoenix, AZ USA.

摘要

卫星遥感用于以各种空间分辨率收集重要的大气和地球物理数据,从而洞察全球时空地表和气候变异性。这些观测常常因以下原因而受到地球表面空间和时间信息缺失的困扰:(1)卫星经过时的云层覆盖;(2)极地轨道卫星的不频繁经过。虽然有许多方法可用于对时空缺失数据进行建模,但就热红外遥感获取的地表温度(LST)而言,这些方法通常忽略了称为“日循环”的时间模式,该模式从物理上限制温度在午后早些时候达到峰值,并在日出时达到最低值。为了填充LST数据集,我们将日循环参数化为具有未知时空参数的函数形式。使用多分辨率空间基函数,我们从稀疏的卫星观测中估计这些参数,以重建具有连续空间和时间分布的LST场。然后,这些估计可用于让科学家更好地了解相对复杂区域的时空热模式。使用美国国家航空航天局(NASA)的Aqua和Terra卫星上的中分辨率成像光谱仪(MODIS)收集的数据,对德克萨斯州休斯顿和亚利桑那州凤凰城的方法进行了演示。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验