Park Soyoung, Carriquiry Alicia
Department of Statistics, Iowa State University, Ames, IA, USA.
J Appl Stat. 2020 Jun 11;48(10):1833-1860. doi: 10.1080/02664763.2020.1779194. eCollection 2021.
We propose a novel method to quantify the similarity between an impression () from an unknown source and a test impression () from a known source. Using the property of geometrical congruence in the impressions, the degree of correspondence is quantified using ideas from graph theory and maximum clique (MC). The algorithm uses the and coordinates of the edges in the images as the data. We focus on local areas in and the corresponding regions in and extract features for comparison. Using pairs of images with known origin, we train a random forest to classify pairs into mates and non-mates. We collected impressions from 60 pairs of shoes of the same brand and model, worn over six months. Using a different set of very similar shoes, we evaluated the performance of the algorithm in terms of the accuracy with which it correctly classified images into source classes. Using classification error rates and ROC curves, we compare the proposed method to other algorithms in the literature and show that for these data, our method shows good classification performance relative to other methods. The algorithm can be implemented with the R package shoeprintr.
我们提出了一种新颖的方法来量化来自未知来源的印记()与来自已知来源的测试印记()之间的相似度。利用印记中几何全等的特性,使用图论和最大团(MC)的概念来量化对应程度。该算法将图像中边缘的 和 坐标用作数据。我们专注于 中的局部区域以及 中的相应区域,并提取特征进行比较。使用具有已知来源的图像对,我们训练了一个随机森林,将图像对分类为匹配对和非匹配对。我们收集了60双同一品牌和型号的鞋子在六个月内的磨损印记。使用另一组非常相似的鞋子,我们根据算法将图像正确分类到源类别的准确率来评估算法的性能。使用分类错误率和ROC曲线,我们将所提出的方法与文献中的其他算法进行比较,并表明对于这些数据,我们的方法相对于其他方法具有良好的分类性能。该算法可以使用R包shoeprintr来实现。