Suppr超能文献

用于超高维生存数据的无模型切片筛选

Model-free slice screening for ultrahigh-dimensional survival data.

作者信息

Zhang Jing, Liu Yanyan

机构信息

School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, Hubei, People's Republic of China.

School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei, People's Republic of China.

出版信息

J Appl Stat. 2020 Jun 2;48(10):1755-1774. doi: 10.1080/02664763.2020.1772734. eCollection 2021.

Abstract

For ultrahigh-dimensional data, independent feature screening has been demonstrated both theoretically and empirically to be an effective dimension reduction method with low computational demanding. Motivated by the Buckley-James method to accommodate censoring, we propose a fused Kolmogorov-Smirnov filter to screen out the irrelevant dependent variables for ultrahigh-dimensional survival data. The proposed model-free screening method can work with many types of covariates (e.g. continuous, discrete and categorical variables) and is shown to enjoy the sure independent screening property under mild regularity conditions without requiring any moment conditions on covariates. In particular, the proposed procedure can still be powerful when covariates are strongly dependent on each other. We further develop an iterative algorithm to enhance the performance of our method while dealing with the practical situations where some covariates may be marginally unrelated but jointly related to the response. We conduct extensive simulations to evaluate the finite-sample performance of the proposed method, showing that it has favourable exhibition over the existing typical methods. As an illustration, we apply the proposed method to the diffuse large-B-cell lymphoma study.

摘要

对于超高维数据,理论和实证均表明独立特征筛选是一种有效的降维方法,计算要求较低。受用于处理删失的Buckley-James方法的启发,我们提出一种融合的柯尔莫哥洛夫-斯米尔诺夫滤波器,用于筛选超高维生存数据中的无关因变量。所提出的无模型筛选方法可处理多种类型的协变量(如连续、离散和分类变量),并且在温和的正则条件下具有确定独立筛选性质,无需对协变量有任何矩条件。特别地,当协变量彼此高度相关时,所提出的方法仍然有效。我们进一步开发了一种迭代算法,以在处理某些协变量可能边缘无关但与响应联合相关的实际情况时提高我们方法的性能。我们进行了广泛的模拟以评估所提出方法的有限样本性能,结果表明它比现有的典型方法表现更优。作为示例,我们将所提出的方法应用于弥漫性大B细胞淋巴瘤研究。

相似文献

1
Model-free slice screening for ultrahigh-dimensional survival data.
J Appl Stat. 2020 Jun 2;48(10):1755-1774. doi: 10.1080/02664763.2020.1772734. eCollection 2021.
2
Feature Screening in Ultrahigh Dimensional Cox's Model.
Stat Sin. 2016;26:881-901. doi: 10.5705/ss.2014.171.
3
Model-free conditional screening for ultrahigh-dimensional survival data via conditional distance correlation.
Biom J. 2023 Mar;65(3):e2200089. doi: 10.1002/bimj.202200089. Epub 2022 Dec 16.
4
Feature screening for case-cohort studies with failure time outcome.
Scand Stat Theory Appl. 2021 Mar;48(1):349-370. doi: 10.1111/sjos.12503. Epub 2020 Nov 16.
5
Feature Screening in Ultrahigh Dimensional Generalized Varying-coefficient Models.
Stat Sin. 2020;30:1049-1067. doi: 10.5705/ss.202017.0362.
6
Sure Joint Screening for High Dimensional Cox's Proportional Hazards Model Under the Case-Cohort Design.
J Comput Biol. 2023 Jun;30(6):663-677. doi: 10.1089/cmb.2022.0416. Epub 2023 May 3.
7
Feature screening in ultrahigh-dimensional varying-coefficient Cox model.
J Multivar Anal. 2019 May;171:284-297. doi: 10.1016/j.jmva.2018.12.009. Epub 2018 Dec 28.
8
Conditional screening for ultrahigh-dimensional survival data in case-cohort studies.
Lifetime Data Anal. 2021 Oct;27(4):632-661. doi: 10.1007/s10985-021-09531-7. Epub 2021 Aug 20.
9
Feature screening in ultrahigh-dimensional additive Cox model.
J Stat Comput Simul. 2018;88(6):1117-1133. doi: 10.1080/00949655.2017.1422127. Epub 2018 Jan 8.
10
Feature Selection for Varying Coefficient Models With Ultrahigh Dimensional Covariates.
J Am Stat Assoc. 2014 Jan 1;109(505):266-274. doi: 10.1080/01621459.2013.850086.

本文引用的文献

1
Censored cumulative residual independent screening for ultrahigh-dimensional survival data.
Lifetime Data Anal. 2018 Apr;24(2):273-292. doi: 10.1007/s10985-017-9395-2. Epub 2017 May 26.
2
Censored Rank Independence Screening for High-dimensional Survival Data.
Biometrika. 2014;101(4):799-814. doi: 10.1093/biomet/asu047.
3
Nonparametric Independence Screening in Sparse Ultra-High Dimensional Varying Coefficient Models.
J Am Stat Assoc. 2014;109(507):1270-1284. doi: 10.1080/01621459.2013.879828.
4
Feature Screening via Distance Correlation Learning.
J Am Stat Assoc. 2012 Jul 1;107(499):1129-1139. doi: 10.1080/01621459.2012.695654.
5
MARGINAL EMPIRICAL LIKELIHOOD AND SURE INDEPENDENCE FEATURE SCREENING.
Ann Stat. 2013 Aug 1;41(4). doi: 10.1214/13-AOS1139.
6
Model-Free Feature Screening for Ultrahigh Dimensional Data.
J Am Stat Assoc. 2011 Jan 1;106(496):1464-1475. doi: 10.1198/jasa.2011.tm10563. Epub 2012 Jan 24.
7
Principled sure independence screening for Cox models with ultra-high-dimensional covariates.
J Multivar Anal. 2012 Feb 1;105(1):397-411. doi: 10.1016/j.jmva.2011.08.002.
8
Nonparametric Independence Screening in Sparse Ultra-High Dimensional Additive Models.
J Am Stat Assoc. 2011 Jun;106(494):544-557. doi: 10.1198/jasa.2011.tm09779.
10
On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data.
Stat Med. 2011 May 10;30(10):1105-17. doi: 10.1002/sim.4154. Epub 2011 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验