Suppr超能文献

作为线性回归中有影响子集检测工具的二进制粒子群优化算法

Binary particle swarm optimization as a detection tool for influential subsets in linear regression.

作者信息

Deliorman G, Inan D

机构信息

Faculty of Engineering and Architecture, Software Engineering, Beykoz University, Istanbul, Turkey.

Faculty of Arts and Sciences, Department of Statistics, Marmara University, Istanbul, Turkey.

出版信息

J Appl Stat. 2020 Jun 14;48(13-15):2441-2456. doi: 10.1080/02664763.2020.1779196. eCollection 2021.

Abstract

An influential observation is any point that has a huge effect on the coefficients of a regression line fitting the data. The presence of such observations in the data set reduces the sensitivity and validity of the statistical analysis. In the literature there are many methods used for identifying influential observations. However, many of those methods are highly influenced by masking and swamping effects and require distributional assumptions. Especially in the presence of influential subsets most of these methods are insufficient to detect these observations. This study aims to develop a new diagnostic tool for identifying influential observations using the meta-heuristic binary particle swarm optimization algorithm. This proposed approach does not require any distributional assumptions and also not affected by masking and swamping effects as the known methods. The performance of the proposed method is analyzed via simulations and real data set applications.

摘要

一个有影响力的观测值是指对拟合数据的回归线系数有巨大影响的任何点。数据集中存在此类观测值会降低统计分析的敏感性和有效性。文献中有许多用于识别有影响力观测值的方法。然而,其中许多方法受到掩盖和淹没效应的高度影响,并且需要分布假设。特别是在存在有影响力的子集时,这些方法中的大多数不足以检测到这些观测值。本研究旨在开发一种使用元启发式二进制粒子群优化算法来识别有影响力观测值的新诊断工具。所提出的这种方法不需要任何分布假设,并且也不会像已知方法那样受到掩盖和淹没效应的影响。通过模拟和实际数据集应用来分析所提出方法的性能。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验