Wang W, Chow S C, Wei W W
Department of Statistics, Temple University, Philadelphia, Pennsylvania 19122, USA.
J Biopharm Stat. 1995 Nov;5(3):307-22. doi: 10.1080/10543409508835116.
The likelihood distance has been widely used to detect outlying observations in data analysis. Cook and Weisberg (5) suggested that the likelihood distance may be compared to a chi 2 distribution for large samples. In this paper, we show that use of the chi 2 distribution is inappropriate. The results indicate that the likelihood distance does not follow an asymptotically chi 2 distribution. Instead, it converges to 0 in probability as the sample size increases. We show that for a nondegenerate limiting distribution, a multiplication factor related to the sample size n is needed. In general, the limiting distribution of this modified statistic is model-dependent.
似然距离已被广泛用于数据分析中异常观测值的检测。库克和韦斯伯格(5)提出,对于大样本,似然距离可与卡方分布进行比较。在本文中,我们表明使用卡方分布是不合适的。结果表明,似然距离并不渐近服从卡方分布。相反,随着样本量的增加,它依概率收敛到0。我们表明,对于一个非退化的极限分布,需要一个与样本量n相关的乘法因子。一般来说,这个修正统计量的极限分布依赖于模型。