Suppr超能文献

关于用于异常值检测的似然距离。

On likelihood distance for outliers detection.

作者信息

Wang W, Chow S C, Wei W W

机构信息

Department of Statistics, Temple University, Philadelphia, Pennsylvania 19122, USA.

出版信息

J Biopharm Stat. 1995 Nov;5(3):307-22. doi: 10.1080/10543409508835116.

Abstract

The likelihood distance has been widely used to detect outlying observations in data analysis. Cook and Weisberg (5) suggested that the likelihood distance may be compared to a chi 2 distribution for large samples. In this paper, we show that use of the chi 2 distribution is inappropriate. The results indicate that the likelihood distance does not follow an asymptotically chi 2 distribution. Instead, it converges to 0 in probability as the sample size increases. We show that for a nondegenerate limiting distribution, a multiplication factor related to the sample size n is needed. In general, the limiting distribution of this modified statistic is model-dependent.

摘要

似然距离已被广泛用于数据分析中异常观测值的检测。库克和韦斯伯格(5)提出,对于大样本,似然距离可与卡方分布进行比较。在本文中,我们表明使用卡方分布是不合适的。结果表明,似然距离并不渐近服从卡方分布。相反,随着样本量的增加,它依概率收敛到0。我们表明,对于一个非退化的极限分布,需要一个与样本量n相关的乘法因子。一般来说,这个修正统计量的极限分布依赖于模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验