Suppr超能文献

生物电子等排体对常见通透性限制基团的有效渗透表面积的影响。

Bioisostere Effects on the EPSA of Common Permeability-Limiting Groups.

作者信息

Ecker Andrew K, Levorse Dorothy A, Victor Daniel A, Mitcheltree Matthew J

机构信息

Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115-5727, United States.

Department of Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States.

出版信息

ACS Med Chem Lett. 2022 May 23;13(6):964-971. doi: 10.1021/acsmedchemlett.2c00114. eCollection 2022 Jun 9.

Abstract

Polar molecular surface area provides a valuable metric when optimizing properties as varied as membrane permeability and efflux susceptibility. The EPSA method to measure this quantity has had a substantial impact in medicinal chemistry, providing insight into the conformational and stereoelectronic features that govern the polarity of small molecules, targeted protein degraders, and macrocyclic peptides. Recognizing the value of bioisosteres in replacing permeation-limiting polar groups, we determined the effects of common amide, carboxylic acid, and phenol bioisosteres on EPSA, using matched molecular pairs within the Merck compound collection. Our findings reinforce EPSA's utility in optimizing permeability, highlight bioisosteres within each class that are particularly effective in lowering EPSA and others, which despite widespread use, offer little to no such benefit. Our method for matched-pair identification is generalizable across large compound collections and, thus, may constitute a flexible platform to study the effects of bioisosterism both in EPSA and other in vitro assays.

摘要

当优化诸如膜通透性和外排敏感性等各种性质时,极性分子表面积提供了一个有价值的指标。测量该量的EPSA方法在药物化学中产生了重大影响,有助于深入了解控制小分子、靶向蛋白质降解剂和大环肽极性的构象和立体电子特征。认识到生物电子等排体在取代限制渗透的极性基团方面的价值,我们利用默克化合物库中的匹配分子对,确定了常见的酰胺、羧酸和酚类生物电子等排体对EPSA的影响。我们的研究结果强化了EPSA在优化通透性方面的实用性,突出了每一类中对降低EPSA特别有效的生物电子等排体,以及其他一些尽管广泛使用但几乎没有这种益处的生物电子等排体。我们用于匹配对识别的方法可推广到大型化合物库,因此可能构成一个灵活的平台,用于研究生物电子等排体在EPSA和其他体外试验中的作用。

相似文献

1
Bioisostere Effects on the EPSA of Common Permeability-Limiting Groups.
ACS Med Chem Lett. 2022 May 23;13(6):964-971. doi: 10.1021/acsmedchemlett.2c00114. eCollection 2022 Jun 9.
2
High-Throughput SFC-MS/MS Method to Measure EPSA and Predict Human Permeability.
J Med Chem. 2024 Aug 22;67(16):13765-13777. doi: 10.1021/acs.jmedchem.4c00571. Epub 2024 Jul 8.
3
Relationship between Passive Permeability and Molecular Polarity Using Block Relevance Analysis.
Mol Pharm. 2017 Feb 6;14(2):386-393. doi: 10.1021/acs.molpharmaceut.6b00724. Epub 2017 Jan 17.
4
Average Electron Density: A Quantitative Tool for Evaluating Non-Classical Bioisosteres of Amides.
ACS Omega. 2024 Mar 5;9(11):13172-13182. doi: 10.1021/acsomega.3c09732. eCollection 2024 Mar 19.
5
The application of bioisosteres in drug design for novel drug discovery: focusing on acid protease inhibitors.
Expert Opin Drug Discov. 2012 Oct;7(10):903-22. doi: 10.1517/17460441.2012.712513. Epub 2012 Aug 8.
7
EPSA: A Novel Supercritical Fluid Chromatography Technique Enabling the Design of Permeable Cyclic Peptides.
ACS Med Chem Lett. 2014 Aug 4;5(10):1167-72. doi: 10.1021/ml500239m. eCollection 2014 Oct 9.
8
Nonclassical Phenyl Bioisosteres as Effective Replacements in a Series of Novel Open-Source Antimalarials.
J Med Chem. 2020 Oct 22;63(20):11585-11601. doi: 10.1021/acs.jmedchem.0c00746. Epub 2020 Sep 30.
9
Structural Consequences of the 1,2,3-Triazole as an Amide Bioisostere in Analogues of the Cystic Fibrosis Drugs VX-809 and VX-770.
ChemMedChem. 2020 Sep 16;15(18):1720-1730. doi: 10.1002/cmdc.202000220. Epub 2020 May 26.
10
Amide Bond Bioisosteres: Strategies, Synthesis, and Successes.
J Med Chem. 2020 Nov 12;63(21):12290-12358. doi: 10.1021/acs.jmedchem.0c00530. Epub 2020 Aug 4.

引用本文的文献

1
Accessing sulfonamides via formal SO insertion into C-N bonds.
Nat Chem. 2025 Jun 20. doi: 10.1038/s41557-025-01848-2.
2
Innovative On-Resin and in Solution Peptidomimetics Synthesis via Metal-Free Photocatalytic Approach.
Chemistry. 2024 Dec 5;30(68):e202402790. doi: 10.1002/chem.202402790. Epub 2024 Nov 8.
3
An Electrosynthesis of 1,3,4-Oxadiazoles from N-Acyl Hydrazones.
Chemistry. 2024 Dec 10;30(69):e202403128. doi: 10.1002/chem.202403128. Epub 2024 Oct 30.
4
Sandmeyer Chlorosulfonylation of (Hetero)Aromatic Amines Using DABSO as an SO Surrogate.
Org Lett. 2024 Jul 19;26(28):5951-5955. doi: 10.1021/acs.orglett.4c01908. Epub 2024 Jul 11.
5
Structure and Biosynthesis of Hectoramide B, a Linear Depsipeptide from Marine Cyanobacterium JHB Discovered via Coculture with .
ACS Chem Biol. 2024 Mar 15;19(3):619-628. doi: 10.1021/acschembio.3c00391. Epub 2024 Feb 8.
6
Design and Discovery of Novel NLRP3 Inhibitors and PET Imaging Radiotracers Based on a 1,2,3-Triazole-Bearing Scaffold.
J Med Chem. 2024 Jan 11;67(1):555-571. doi: 10.1021/acs.jmedchem.3c01782. Epub 2023 Dec 27.
7
One-Pot Synthesis of Sulfonamides from Unactivated Acids and Amines via Aromatic Decarboxylative Halosulfonylation.
J Am Chem Soc. 2023 Oct 4;145(39):21189-21196. doi: 10.1021/jacs.3c08218. Epub 2023 Sep 20.

本文引用的文献

1
Amide-to-Ester Substitution as a Strategy for Optimizing PROTAC Permeability and Cellular Activity.
J Med Chem. 2021 Dec 23;64(24):18082-18101. doi: 10.1021/acs.jmedchem.1c01496. Epub 2021 Dec 9.
2
Discovery of : an Efficient Inhibitor of the HDM2-p53 Protein-Protein Interaction.
J Med Chem. 2021 Nov 11;64(21):16213-16241. doi: 10.1021/acs.jmedchem.1c01524. Epub 2021 Oct 29.
3
Maxamycins: Durable Antibiotics Derived by Rational Redesign of Vancomycin.
Acc Chem Res. 2020 Nov 17;53(11):2587-2599. doi: 10.1021/acs.accounts.0c00569. Epub 2020 Nov 2.
5
Amide Bond Bioisosteres: Strategies, Synthesis, and Successes.
J Med Chem. 2020 Nov 12;63(21):12290-12358. doi: 10.1021/acs.jmedchem.0c00530. Epub 2020 Aug 4.
6
The Most Common Functional Groups in Bioactive Molecules and How Their Popularity Has Evolved over Time.
J Med Chem. 2020 Aug 13;63(15):8408-8418. doi: 10.1021/acs.jmedchem.0c00754. Epub 2020 Jul 29.
7
Structural Consequences of the 1,2,3-Triazole as an Amide Bioisostere in Analogues of the Cystic Fibrosis Drugs VX-809 and VX-770.
ChemMedChem. 2020 Sep 16;15(18):1720-1730. doi: 10.1002/cmdc.202000220. Epub 2020 May 26.
8
Log Contributions of Substituents Commonly Used in Medicinal Chemistry.
ACS Med Chem Lett. 2019 Dec 11;11(1):72-76. doi: 10.1021/acsmedchemlett.9b00489. eCollection 2020 Jan 9.
9
Design Principles for Intestinal Permeability of Cyclic Peptides.
Methods Mol Biol. 2019;2001:1-15. doi: 10.1007/978-1-4939-9504-2_1.
10
CFH, a Functional Group-Dependent Hydrogen-Bond Donor: Is It a More or Less Lipophilic Bioisostere of OH, SH, and CH?
J Med Chem. 2019 Jun 13;62(11):5628-5637. doi: 10.1021/acs.jmedchem.9b00604. Epub 2019 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验