Capdeville Vitor, Gonçalves Kelly C M, Pereira João B M
Departamento de Métodos Estatísticos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
J Appl Stat. 2020 Jul 29;48(16):3150-3173. doi: 10.1080/02664763.2020.1796935. eCollection 2021.
Factor analysis is a flexible technique for assessment of multivariate dependence and codependence. Besides being an exploratory tool used to reduce the dimensionality of multivariate data, it allows estimation of common factors that often have an interesting theoretical interpretation in real problems. However, standard factor analysis is only applicable when the variables are scaled, which is often inappropriate, for example, in data obtained from questionnaires in the field of psychology, where the variables are often categorical. In this framework, we propose a factor model for the analysis of multivariate ordered and non-ordered polychotomous data. The inference procedure is done under the Bayesian approach via Markov chain Monte Carlo methods. Two Monte Carlo simulation studies are presented to investigate the performance of this approach in terms of estimation bias, precision and assessment of the number of factors. We also illustrate the proposed method to analyze participants' responses to the Motivational State Questionnaire dataset, developed to study emotions in laboratory and field settings.
因子分析是一种用于评估多变量依赖性和共依赖性的灵活技术。除了作为一种用于降低多变量数据维度的探索性工具外,它还允许估计共同因子,这些共同因子在实际问题中通常具有有趣的理论解释。然而,标准因子分析仅适用于变量经过缩放的情况,而这通常并不合适,例如,在心理学领域通过问卷调查获得的数据中,变量往往是分类变量。在此框架下,我们提出了一种用于分析多变量有序和无序多分类数据的因子模型。推理过程是在贝叶斯方法下通过马尔可夫链蒙特卡罗方法完成的。进行了两项蒙特卡罗模拟研究,以调查该方法在估计偏差、精度和因子数量评估方面的性能。我们还举例说明了所提出的方法,用于分析参与者对为研究实验室和现场环境中的情绪而开发的动机状态问卷数据集的回答。