Suppr超能文献

一种针对具有相关误差项和异常值的线性回归模型参数的稳健估计方法。

A robust estimation method for the linear regression model parameters with correlated error terms and outliers.

作者信息

Piradl Sajjad, Shadrokh Ali, Yarmohammadi Masoud

机构信息

Department of Statistics, Payame Noor University, Tehran, Iran.

出版信息

J Appl Stat. 2021 Feb 4;49(7):1663-1676. doi: 10.1080/02664763.2021.1881454. eCollection 2022.

Abstract

Independence of error terms in a linear regression model, often not established. So a linear regression model with correlated error terms appears in many applications. According to the earlier studies, this kind of error terms, basically can affect the robustness of the linear regression model analysis. It is also shown that the robustness of the parameters estimators of a linear regression model can stay using the M-estimator. But considering that, it acquires this feature as the result of establishment of its efficiency. Whereas, it has been shown that the minimum Matusita distance estimators, has both features robustness and efficiency at the same time. On the other hand, because the Cochrane and Orcutt adjusted least squares estimators are not affected by the dependence of the error terms, so they are efficient estimators. Here we are using of a non-parametric kernel density estimation method, to give a new method of obtaining the minimum Matusita distance estimators for the linear regression model with correlated error terms in the presence of outliers. Also, simulation and real data study both are done for the introduced estimation method. In each case, the proposed method represents lower biases and mean squared errors than the other two methods.

摘要

线性回归模型中误差项的独立性往往无法确立。因此,具有相关误差项的线性回归模型在许多应用中都会出现。根据早期研究,这种误差项基本上会影响线性回归模型分析的稳健性。研究还表明,使用M估计量可以保持线性回归模型参数估计量的稳健性。但考虑到这一点,它是因其效率的建立而获得这一特性的。然而,已经证明,最小马氏距离估计量同时具有稳健性和效率这两个特性。另一方面,由于科克伦和奥科特调整最小二乘估计量不受误差项相关性的影响,所以它们是有效估计量。在此,我们使用非参数核密度估计方法,给出一种在存在异常值的情况下为具有相关误差项的线性回归模型获取最小马氏距离估计量的新方法。同时,针对所引入的估计方法进行了模拟和实际数据研究。在每种情况下,所提出的方法都比其他两种方法表现出更低的偏差和均方误差。

相似文献

2
Robust estimation for longitudinal data based upon minimum Hellinger distance.基于最小赫林格距离的纵向数据稳健估计
J Appl Stat. 2019 Jul 1;47(1):150-159. doi: 10.1080/02664763.2019.1635573. eCollection 2020.
5
Regularized robust estimation in binary regression models.二元回归模型中的正则化稳健估计
J Appl Stat. 2020 Sep 18;49(3):574-598. doi: 10.1080/02664763.2020.1822304. eCollection 2022.
6
Improved regression in ratio type estimators based on robust M-estimation.基于鲁棒 M 估计的比率型估计量的改进回归。
PLoS One. 2022 Dec 12;17(12):e0278868. doi: 10.1371/journal.pone.0278868. eCollection 2022.
7
Unbiased K-L estimator for the linear regression model.无偏 K-L 估计量在线性回归模型中的应用。
F1000Res. 2021 Aug 19;10:832. doi: 10.12688/f1000research.54990.1. eCollection 2021.
9
Robust and efficient estimation of GARCH models based on Hellinger distance.基于赫尔利距离的GARCH模型的稳健有效估计
J Appl Stat. 2021 Aug 27;49(15):3976-4002. doi: 10.1080/02664763.2021.1970120. eCollection 2022.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验