Suppr超能文献

二元回归模型中的正则化稳健估计

Regularized robust estimation in binary regression models.

作者信息

Tang Qingguo, Karunamuni Rohana J, Liu Boxiao

机构信息

School of Economics and Management, Nanjing University of Science and Technology, Nanjing, People's Republic of China.

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Canada.

出版信息

J Appl Stat. 2020 Sep 18;49(3):574-598. doi: 10.1080/02664763.2020.1822304. eCollection 2022.

Abstract

In this paper, we investigate robust parameter estimation and variable selection for binary regression models with . We investigate estimation procedures based on the minimum-distance approach. In particular, we employ minimum Hellinger and minimum symmetric chi-squared distances criteria and propose regularized minimum-distance estimators. These estimators appear to possess a certain degree of automatic robustness against model misspecification and/or for potential outliers. We show that the proposed non-penalized and penalized minimum-distance estimators are efficient under the model and simultaneously have excellent robustness properties. We study their asymptotic properties such as consistency, asymptotic normality and oracle properties. Using Monte Carlo studies, we examine the small-sample and robustness properties of the proposed estimators and compare them with traditional likelihood estimators. We also study two real-data applications to illustrate our methods. The numerical studies indicate the satisfactory finite-sample performance of our procedures.

摘要

在本文中,我们研究了具有[具体条件未给出]的二元回归模型的稳健参数估计和变量选择。我们研究基于最小距离方法的估计程序。特别地,我们采用最小赫林格距离和最小对称卡方距离准则,并提出正则化最小距离估计量。这些估计量似乎对模型误设和/或潜在异常值具有一定程度的自动稳健性。我们表明,所提出的非惩罚和惩罚最小距离估计量在模型下是有效的,同时具有出色的稳健性。我们研究它们的渐近性质,如一致性、渐近正态性和神谕性质。通过蒙特卡罗研究,我们检验了所提出估计量的小样本和稳健性,并将它们与传统似然估计量进行比较。我们还研究了两个实际数据应用以说明我们的方法。数值研究表明我们的程序具有令人满意的有限样本性能。

相似文献

1
Regularized robust estimation in binary regression models.
J Appl Stat. 2020 Sep 18;49(3):574-598. doi: 10.1080/02664763.2020.1822304. eCollection 2022.
2
Efficient robust doubly adaptive regularized regression with applications.
Stat Methods Med Res. 2019 Jul;28(7):2210-2226. doi: 10.1177/0962280218757560. Epub 2018 Feb 16.
3
Robust and efficient estimation of GARCH models based on Hellinger distance.
J Appl Stat. 2021 Aug 27;49(15):3976-4002. doi: 10.1080/02664763.2021.1970120. eCollection 2022.
4
Robust Variable Selection with Exponential Squared Loss.
J Am Stat Assoc. 2013 Apr 1;108(502):632-643. doi: 10.1080/01621459.2013.766613.
5
Semiparametric modelling of two-component mixtures with stochastic dominance.
Ann Inst Stat Math. 2023;75(1):39-70. doi: 10.1007/s10463-022-00835-5. Epub 2022 May 24.
7
Robust estimation for longitudinal data based upon minimum Hellinger distance.
J Appl Stat. 2019 Jul 1;47(1):150-159. doi: 10.1080/02664763.2019.1635573. eCollection 2020.
8
On the robustness of the adaptive lasso to model misspecification.
Biometrika. 2012 Sep;99(3):717-731. doi: 10.1093/biomet/ass027. Epub 2012 Jul 11.
9
A robust estimation method for the linear regression model parameters with correlated error terms and outliers.
J Appl Stat. 2021 Feb 4;49(7):1663-1676. doi: 10.1080/02664763.2021.1881454. eCollection 2022.

本文引用的文献

1
Robust Clustering with Subpopulation-specific Deviations.
J Am Stat Assoc. 2020;115(530):521-537. doi: 10.1080/01621459.2019.1611583. Epub 2019 Jun 19.
2
Efficient robust doubly adaptive regularized regression with applications.
Stat Methods Med Res. 2019 Jul;28(7):2210-2226. doi: 10.1177/0962280218757560. Epub 2018 Feb 16.
3
ADAPTIVE ROBUST VARIABLE SELECTION.
Ann Stat. 2014 Feb 1;42(1):324-351. doi: 10.1214/13-AOS1191.
4
Robust Variable Selection with Exponential Squared Loss.
J Am Stat Assoc. 2013 Apr 1;108(502):632-643. doi: 10.1080/01621459.2013.766613.
5
Non-Concave Penalized Likelihood with NP-Dimensionality.
IEEE Trans Inf Theory. 2011 Aug;57(8):5467-5484. doi: 10.1109/TIT.2011.2158486.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验