Suppr超能文献

复杂监测健康数据的状态转换建模

State transition modeling of complex monitored health data.

作者信息

Schulz Jörn, Kvaløy Jan Terje, Engan Kjersti, Eftestøl Trygve, Jatosh Samwel, Kidanto Hussein, Ersdal Hege

机构信息

Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway.

Department of Mathematics and Physics, University of Stavanger, Stavanger, Norway.

出版信息

J Appl Stat. 2019 Dec 4;47(11):1915-1935. doi: 10.1080/02664763.2019.1698523. eCollection 2020.

Abstract

This article considers the analysis of complex monitored health data, where often one or several signals are reflecting the current health status that can be represented by a finite number of states, in addition to a set of covariates. In particular, we consider a novel application of a non-parametric state intensity regression method in order to study time-dependent effects of covariates on the state transition intensities. The method can handle baseline, time varying as well as dynamic covariates. Because of the non-parametric nature, the method can handle different data types and challenges under minimal assumptions. If the signal that is reflecting the current health status is of continuous nature, we propose the application of a weighted median and a hysteresis filter as data pre-processing steps in order to facilitate robust analysis. In intensity regression, covariates can be aggregated by a suitable functional form over a time history window. We propose to study the estimated cumulative regression parameters for different choices of the time history window in order to investigate short- and long-term effects of the given covariates. The proposed framework is discussed and applied to resuscitation data of newborns collected in Tanzania.

摘要

本文考虑对复杂的监测健康数据进行分析,其中除了一组协变量外,通常有一个或几个信号反映可由有限数量状态表示的当前健康状况。特别是,我们考虑一种非参数状态强度回归方法的新应用,以研究协变量对状态转移强度的时间依赖性影响。该方法可以处理基线、随时间变化以及动态协变量。由于其非参数性质,该方法可以在最小假设下处理不同的数据类型和挑战。如果反映当前健康状况的信号是连续性质的,我们建议应用加权中位数和滞后滤波器作为数据预处理步骤,以便于进行稳健分析。在强度回归中,协变量可以通过合适的函数形式在时间历史窗口上进行汇总。我们建议研究针对时间历史窗口的不同选择所估计的累积回归参数,以调查给定协变量的短期和长期影响。对所提出的框架进行了讨论,并将其应用于在坦桑尼亚收集的新生儿复苏数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bab/9041820/7c717ae5dcd0/CJAS_A_1698523_F0001_OB.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验