Noor-Ul-Amin Muhammad, Sarwar Muhammad Atif, Emam Walid, Tashkandy Yusra, Yasmeen Uzma, Nabi Muhammad
COMSATS University Islamabad-Lahore Campus, Lahore, Pakistan.
Department of Statistics and Operations Research, King Saud University, Riyadh, Saudi Arabia.
Sci Rep. 2023 Oct 24;13(1):18137. doi: 10.1038/s41598-023-45399-3.
Adaptive EWMA (AEWMA) control charts have gained remarkable recognition by monitoring productions over a wide range of shifts. The adaptation of computational statistic as per system shift is the main aspect behind the proficiency of these charts. In this paper, a function-based AEWMA multivariate control chart is suggested to monitor the stability of the variance-covariance matrix for normally distributed process control. Our approach involves utilizing an unbiased estimator applying the EWMA statistic to estimate the process shift in real-time and adapt the smoothing or weighting constant using a suggested continuous function. Preferably, the Monte Carlo simulation method is utilized to determine the characteristics of the suggested AEWMA chart in terms of proficient detection of process shifts. The underlying computed results are compared with existing EWMA and existing AEWMA charts and proved to outperform in providing quick detection for different sizes of shifts. To illustrate its real-life application, the authors employed the concept in the bimetal thermostat industry dataset. The proposed research contributes to statistical process control and provides a practical tool for the solution while monitoring covariance matrix changes.
自适应指数加权移动平均(AEWMA)控制图通过在广泛的班次范围内监控生产而获得了显著认可。根据系统班次调整计算统计量是这些控制图有效性背后的主要方面。本文提出了一种基于函数的AEWMA多元控制图,用于监测正态分布过程控制中方差协方差矩阵的稳定性。我们的方法包括使用一个无偏估计量,应用指数加权移动平均统计量实时估计过程偏移,并使用一个建议的连续函数调整平滑或加权常数。最好利用蒙特卡罗模拟方法来确定所建议的AEWMA控制图在有效检测过程偏移方面的特性。将底层计算结果与现有的指数加权移动平均控制图和现有的AEWMA控制图进行比较,结果证明在对不同大小的偏移提供快速检测方面表现更优。为了说明其在实际生活中的应用,作者将该概念应用于双金属恒温器行业数据集。所提出的研究有助于统计过程控制,并在监测协方差矩阵变化时为解决方案提供了一个实用工具。