Maghami Mohammad Mahdi, Bahrami Mohammad, Sajadi Farkhondeh Alsadat
Department of Statistics, University of Isfahan, Isfahan, Iran.
J Appl Stat. 2020 Jan 9;47(16):3030-3052. doi: 10.1080/02664763.2019.1710114. eCollection 2020.
A particular concerns of researchers in statistical inference is bias in parameters estimation. Maximum likelihood estimators are often biased and for small sample size, the first order bias of them can be large and so it may influence the efficiency of the estimator. There are different methods for reduction of this bias. In this paper, we proposed a modified maximum likelihood estimator for the shape parameter of two popular skew distributions, namely skew-normal and skew-t, by offering a new method. We show that this estimator has lower asymptotic bias than the maximum likelihood estimator and is more efficient than those based on the existing methods.
统计推断中研究人员特别关注的一个问题是参数估计中的偏差。最大似然估计量通常是有偏的,对于小样本量,它们的一阶偏差可能很大,因此可能会影响估计量的效率。有不同的方法来减少这种偏差。在本文中,我们通过提供一种新方法,为两种常见的偏态分布(即偏态正态分布和偏态t分布)的形状参数提出了一种修正的最大似然估计量。我们表明,该估计量的渐近偏差比最大似然估计量低,并且比基于现有方法的估计量更有效。