Suppr超能文献

关于偏态正态分布和偏态-t分布的偏差减少估计量。

On bias reduction estimators of skew-normal and skew-t distributions.

作者信息

Maghami Mohammad Mahdi, Bahrami Mohammad, Sajadi Farkhondeh Alsadat

机构信息

Department of Statistics, University of Isfahan, Isfahan, Iran.

出版信息

J Appl Stat. 2020 Jan 9;47(16):3030-3052. doi: 10.1080/02664763.2019.1710114. eCollection 2020.

Abstract

A particular concerns of researchers in statistical inference is bias in parameters estimation. Maximum likelihood estimators are often biased and for small sample size, the first order bias of them can be large and so it may influence the efficiency of the estimator. There are different methods for reduction of this bias. In this paper, we proposed a modified maximum likelihood estimator for the shape parameter of two popular skew distributions, namely skew-normal and skew-t, by offering a new method. We show that this estimator has lower asymptotic bias than the maximum likelihood estimator and is more efficient than those based on the existing methods.

摘要

统计推断中研究人员特别关注的一个问题是参数估计中的偏差。最大似然估计量通常是有偏的,对于小样本量,它们的一阶偏差可能很大,因此可能会影响估计量的效率。有不同的方法来减少这种偏差。在本文中,我们通过提供一种新方法,为两种常见的偏态分布(即偏态正态分布和偏态t分布)的形状参数提出了一种修正的最大似然估计量。我们表明,该估计量的渐近偏差比最大似然估计量低,并且比基于现有方法的估计量更有效。

相似文献

1
On bias reduction estimators of skew-normal and skew-t distributions.关于偏态正态分布和偏态-t分布的偏差减少估计量。
J Appl Stat. 2020 Jan 9;47(16):3030-3052. doi: 10.1080/02664763.2019.1710114. eCollection 2020.
4
Asymptotic Robustness Study of the Polychoric Correlation Estimation.多列相关估计的渐近稳健性研究
Psychometrika. 2017 Mar;82(1):67-85. doi: 10.1007/s11336-016-9512-2. Epub 2016 Sep 22.
5
Maximum-likelihood estimation of relatedness.亲缘关系的最大似然估计。
Genetics. 2003 Mar;163(3):1153-67. doi: 10.1093/genetics/163.3.1153.
8
Causal Inference for a Population of Causally Connected Units.因果关联单元总体的因果推断
J Causal Inference. 2014 Mar;2(1):13-74. doi: 10.1515/jci-2013-0002.
10
Estimation of the log-normal mean.对数正态均值的估计。
Stat Med. 1998 Oct 15;17(19):2251-64. doi: 10.1002/(sici)1097-0258(19981015)17:19<2251::aid-sim925>3.0.co;2-w.

引用本文的文献

1
Ultra-fine transformation of data for normality.数据的超精细正态性转换。
Heliyon. 2022 May 6;8(5):e09370. doi: 10.1016/j.heliyon.2022.e09370. eCollection 2022 May.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验