Hamasha Mohammad M, Ali Haneen, Hamasha Sa'd, Ahmed Abdulaziz
Department of Industrial Engineering, Faculty of Engineering, The Hashemite University, B.O.Box 330127, Zarqa 13313, Jordan.
Health Services Administration Program, Auburn University, Auburn, AL, USA.
Heliyon. 2022 May 6;8(5):e09370. doi: 10.1016/j.heliyon.2022.e09370. eCollection 2022 May.
Normally distributed data is crucial for the application of large-scale statistical analysis. To statisticians, the most important assumptions of statistical users are the adequacy of the data and the normal distribution of the data. However, users are constantly forced to deal with unusual data. This includes changing the method used to be less sensitive to non-normal data or transforming that data to normal data. In addition, common mathematical transformation methods (for example, Box-Cox) do not work on complex distributions, and each method works on limited data shapes. In this paper, a novel approach is presented to transform any data into normally distributed data. We refer to our approach as the Ultra-fine transformation method. The article's novelty is that the proposed approach is powerful enough to accurately transform any data with any distribution to the standard normal distribution. Besides this approach's usefulness, it is simple in both theory and in application, and users can easily retrieve the original data from its transformed state. Therefore, we recommend using this method for the data used in the statistical method, even if the data are normal.
正态分布的数据对于大规模统计分析的应用至关重要。对于统计学家而言,统计用户最重要的假设是数据的充分性和数据的正态分布。然而,用户经常不得不处理异常数据。这包括改变所使用的方法以降低对非正态数据的敏感度,或者将该数据转换为正态数据。此外,常见的数学变换方法(例如,Box-Cox)不适用于复杂分布,并且每种方法仅适用于有限的数据形状。本文提出了一种新颖的方法,可将任何数据转换为正态分布的数据。我们将我们的方法称为超精细变换方法。本文的新颖之处在于,所提出的方法足够强大,能够准确地将任何具有任何分布的数据转换为标准正态分布。除了这种方法的实用性之外,它在理论和应用上都很简单,并且用户可以轻松地从其变换状态中检索原始数据。因此,我们建议在统计方法中使用此方法处理数据,即使数据是正态的。