Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong 518172, P. R. China.
J Chem Inf Model. 2022 Jul 11;62(13):3213-3226. doi: 10.1021/acs.jcim.2c00091. Epub 2022 Jun 16.
Human alkyladenine DNA glycosylase (AAG) is a key enzyme that corrects a broad range of alkylated and deaminated nucleobases to maintain genomic integrity. When encountering the lesions, AAG adopts a base-flipping strategy to extrude the target base from the DNA duplex to its active site, thereby cleaving the glycosidic bond. Despite its functional importance, the detailed mechanism of such base extrusion and how AAG distinguishes the lesions from an excess of normal bases both remain elusive. Here, through the Markov state model constructed on extensive all-atom molecular dynamics simulations, we find that the alkylated nucleobase (N3-methyladenine, 3MeA) everts through the DNA major groove. Two key AAG motifs, the intercalation and E131-N146 motifs, play active roles in bending/pressing the DNA backbone and widening the DNA minor groove during 3MeA eversion. In particular, the intercalated residue Y162 is involved in buckling the target site at the early stage of 3MeA eversion. Our traveling-salesman based automated path searching algorithm further revealed that a non-target normal adenine tends to be trapped in an exo site near the active site, which however barely exists for a target base 3MeA. Collectively, these results suggest that the Markov state model combined with traveling-salesman based automated path searching acts as a promising approach for studying complex conformational changes of biomolecules and dissecting the elaborate mechanism of target recognition by this unique enzyme.
人类烷基腺嘌呤 DNA 糖基化酶 (AAG) 是一种关键酶,可纠正广泛的烷基化和脱氨碱基,以维持基因组完整性。当遇到损伤时,AAG 采用碱基翻转策略将靶碱基从 DNA 双链体中挤出到其活性部位,从而切断糖苷键。尽管其功能重要,但这种碱基外排的详细机制以及 AAG 如何区分损伤与正常碱基的过量,仍然难以捉摸。在这里,通过对广泛的全原子分子动力学模拟构建的 Markov 状态模型,我们发现烷基化碱基 (N3-甲基腺嘌呤,3MeA) 通过 DNA 大沟倒位。两个关键的 AAG 模体,插入和 E131-N146 模体,在 3MeA 倒位过程中积极弯曲/按压 DNA 骨架并加宽 DNA 小沟。特别是,插入的残基 Y162 参与在 3MeA 倒位的早期阶段使靶位点卷曲。我们基于旅行商问题的自动路径搜索算法进一步表明,非靶正常腺嘌呤倾向于被捕获在靠近活性部位的外切位点中,而对于靶碱基 3MeA 则几乎不存在。总的来说,这些结果表明,Markov 状态模型结合基于旅行商问题的自动路径搜索算法是研究生物分子复杂构象变化和剖析这种独特酶的靶识别精细机制的一种很有前途的方法。