Suppr超能文献

自动化路径搜索揭示 T4 溶菌酶突变体增强水解作用的机制。

Automated Path Searching Reveals the Mechanism of Hydrolysis Enhancement by T4 Lysozyme Mutants.

机构信息

Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China.

出版信息

Int J Mol Sci. 2022 Nov 23;23(23):14628. doi: 10.3390/ijms232314628.

Abstract

Bacteriophage T4 lysozyme (T4L) is a glycosidase that is widely applied as a natural antimicrobial agent in the food industry. Due to its wide applications and small size, T4L has been regarded as a model system for understanding protein dynamics and for large-scale protein engineering. Through structural insights from the single conformation of T4L, a series of mutations (L99A,G113A,R119P) have been introduced, which have successfully raised the fractional population of its only hydrolysis-competent excited state to 96%. However, the actual impact of these substitutions on its dynamics remains unclear, largely due to the lack of highly efficient sampling algorithms. Here, using our recently developed travelling-salesman-based automated path searching (TAPS), we located the minimum-free-energy path (MFEP) for the transition of three T4L mutants from their ground states to their excited states. All three mutants share a three-step transition: the flipping of F114, the rearrangement of α0/α1 helices, and final refinement. Remarkably, the MFEP revealed that the effects of the mutations are drastically beyond the expectations of their original design: (a) the G113A substitution not only enhances helicity but also fills the hydrophobic Cavity I and reduces the free energy barrier for flipping F114; (b) R119P barely changes the stability of the ground state but stabilizes the excited state through rarely reported polar contacts S117:N132, E11:R145, and E11:Q105; (c) the residue W138 flips into Cavity I and further stabilizes the excited state for the triple mutant L99A,G113A,R119P. These novel insights that were unexpected in the original mutant design indicated the necessity of incorporating path searching into the workflow of rational protein engineering.

摘要

T4 噬菌体溶菌酶(T4L)是一种糖苷酶,广泛应用于食品工业中的天然抗菌剂。由于其广泛的应用和较小的尺寸,T4L 已被视为理解蛋白质动力学和大规模蛋白质工程的模型系统。通过 T4L 单一构象的结构见解,引入了一系列突变(L99A、G113A、R119P),成功地将其唯一水解活性的激发态的分数种群提高到 96%。然而,这些取代对其动力学的实际影响仍不清楚,这主要是由于缺乏高效的采样算法。在这里,我们使用最近开发的基于旅行商问题的自动路径搜索(TAPS),找到了三个 T4L 突变体从基态到激发态的最小自由能路径(MFEP)。所有三个突变体都有一个三步跃迁:F114 的翻转、α0/α1 螺旋的重排和最终的精修。值得注意的是,MFEP 表明突变的影响远远超出了它们最初设计的预期:(a)G113A 取代不仅增强了螺旋性,而且填充了疏水性 Cavity I,并降低了翻转 F114 的自由能势垒;(b)R119P 几乎没有改变基态的稳定性,但通过很少报道的极性接触 S117:N132、E11:R145 和 E11:Q105 稳定了激发态;(c)残基 W138 翻转到 Cavity I 中,并进一步稳定了三重突变体 L99A、G113A、R119P 的激发态。这些在原始突变设计中出乎意料的新见解表明,在合理的蛋白质工程工作流程中必须纳入路径搜索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c15f/9736071/5e6ef77bdf86/ijms-23-14628-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验