Suppr超能文献

基于叶片反射率的埃塞俄比亚西北部作物产量建模。

A leaf reflectance-based crop yield modeling in Northwest Ethiopia.

机构信息

Faculty of Agriculture and Environmental Sciences, Debre Tabor University, Debre Tabor, Ethiopia.

College of Agriculture and Environmental Sciences, Bahir Dar University, Bahir Dar, Ethiopia.

出版信息

PLoS One. 2022 Jun 16;17(6):e0269791. doi: 10.1371/journal.pone.0269791. eCollection 2022.

Abstract

Crop yield prediction provides information to policymakers in the agricultural production system. This study used leaf reflectance from a spectroradiometer to model grain yield (GY) and aboveground biomass yield (ABY) of maize (Zea mays L.) at Aba Gerima catchment, Ethiopia. A FieldSpec IV (350-2,500 nm wavelengths) spectroradiometer was used to estimate the spectral reflectance of crop leaves during the grain-filling phase. The spectral vegetation indices, such as enhanced vegetation index (EVI), normalized difference VI (NDVI), green NDVI (GNDVI), soil adjusted VI, red NDVI, and simple ratio were deduced from the spectral reflectance. We used regression analyses to identify and predict GY and ABY at the catchment level. The coefficient of determination (R2), the root mean square error (RMSE), and relative importance (RI) were used for evaluating model performance. The findings revealed that the best-fitting curve was obtained between GY and NDVI (R2 = 0.70; RMSE = 0.065; P < 0.0001; RI = 0.19), followed by EVI (R2 = 0.65; RMSE = 0.024; RI = 0.61; P < 0.0001). While the best-fitting curve was obtained between ABY and GNDVI (R2 = 0.71; RI = 0.24; P < 0.0001), followed by NDVI (R2 = 0.77; RI = 0.17; P < 0.0001). The highest GY (7.18 ton/ha) and ABY (18.71 ton/ha) of maize were recorded at a soil bunded plot on a gentle slope. Combined spectral indices were also employed to predict GY with R2 (0.83) and RMSE (0.24) and ABY with R2 (0.78) and RMSE (0.12). Thus, the maize's GY and ABY can be predicted with acceptable accuracy using spectral reflectance indices derived from spectroradiometer in an area like the Aba Gerima catchment. An estimation model of crop yields could help policy-makers in identifying yield-limiting factors and achieve decisive actions to get better crop yields and food security for Ethiopia.

摘要

作物产量预测为农业生产系统中的政策制定者提供信息。本研究使用光谱辐射计的叶片反射率来模拟埃塞俄比亚 Aba Gerima 集水区的玉米(Zea mays L.)的籽粒产量(GY)和地上生物量产量(ABY)。使用 FieldSpec IV(350-2,500nm 波长)光谱辐射计在灌浆期估算作物叶片的光谱反射率。从光谱反射率中推导出光谱植被指数,如增强型植被指数(EVI)、归一化差异 VI(NDVI)、绿色 NDVI(GNDVI)、土壤调整 VI、红色 NDVI 和简单比。我们使用回归分析来确定和预测集水区的 GY 和 ABY。决定系数(R2)、均方根误差(RMSE)和相对重要性(RI)用于评估模型性能。研究结果表明,在 GY 和 NDVI 之间获得了最佳拟合曲线(R2=0.70;RMSE=0.065;P<0.0001;RI=0.19),其次是 EVI(R2=0.65;RMSE=0.024;RI=0.61;P<0.0001)。在 ABY 和 GNDVI 之间获得了最佳拟合曲线(R2=0.71;RI=0.24;P<0.0001),其次是 NDVI(R2=0.77;RI=0.17;P<0.0001)。在缓坡上的土壤垄作地块记录到最高的玉米 GY(7.18 吨/公顷)和 ABY(18.71 吨/公顷)。还使用组合光谱指数来预测 GY,其 R2(0.83)和 RMSE(0.24)以及 ABY 的 R2(0.78)和 RMSE(0.12)。因此,在 Aba Gerima 集水区等地区,可以使用光谱辐射计得出的光谱反射率指数来预测玉米的 GY 和 ABY,具有可接受的准确性。作物产量估算模型可以帮助决策者确定限制产量的因素,并采取果断行动,以提高埃塞俄比亚的作物产量和粮食安全。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fd6/9202864/1087a2d2869a/pone.0269791.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验