Graduate School of Engineering, Nagasaki University, Nagasaki, Japan.
School of Molecular Sciences, University of Western Australia, Perth, WA, Australia.
J Comput Chem. 2022 Aug 5;43(21):1394-1402. doi: 10.1002/jcc.26892. Epub 2022 Jun 16.
In the present study, we have investigated the performance of RIJCOSX DLPNO-CCSD(T)-F12 methods for a wide range of systems. Calculations with a high-accuracy option ["DefGrid3 RIJCOSX DLPNO-CCSD(T )-F12"] extrapolated to the complete-basis-set limit using the maug-cc-pV[D+d,T+d]Z basis sets provides fairly good agreements with the canonical CCSD(T)/CBS reference for a diverse set of thermochemical and kinetic properties [with mean absolute deviations (MADs) of ~1-2 kJ mol except for atomization energies]. On the other hand, the low-cost "RIJCOSX DLPNO-CCSD(T)-F12D" option leads to substantial deviations for certain properties, notably atomization energies (MADs of up to tens of kJ mol ). With the high-accuracy CBS approach, we have formulated the L-W1X method, which further includes a low-cost core-valence plus scalar-relativistic term. It shows generally good accuracy. For improved accuracies in specific cases, we advise replacing maug-cc-pV(n+d)Z with jun-cc-pV(n+d)Z for the calculation of electron affinities, and using well-constructed isodesmic-type reactions to obtain atomization energies. For medium-sized systems, DefGrid3 RIJCOSX DLPNO-CCSD(T )-F12 calculations are several times faster than the corresponding canonical computation; the use of the local approximations (RIJCOSX and DLPNO) leads to a better scaling than that for the canonical calculation (from ~6-7 down to ~2-4 for our test systems). Thus, the DefGrid3 RIJCOSX DLPNO-CCSD(T )-F12 method, and the L-W1X protocol that based on it, represent a useful means for obtaining accurate thermochemical quantities for larger systems.
在本研究中,我们考察了 RIJCOSX DLPNO-CCSD(T)-F12 方法在广泛体系中的性能。使用高精度选项 ["DefGrid3 RIJCOSX DLPNO-CCSD(T)-F12"] 并结合 maug-cc-pV[D+d,T+d]Z 基组进行计算,可将结果外推至完全基组极限,所得结果与各种热化学和动力学性质的典型 CCSD(T)/CBS 参考值吻合良好 [平均绝对偏差 (MAD) 约为 1-2 kJ/mol,除原子化能外]。另一方面,低成本的 "RIJCOSX DLPNO-CCSD(T)-F12D" 选项会导致某些性质,尤其是原子化能 (MAD 高达数十 kJ/mol),出现显著偏差。采用高精度 CBS 方法,我们提出了 L-W1X 方法,该方法进一步包含一个低成本的核心价态加标量相对论项。该方法的准确性总体较好。对于某些特定情况,若要提高精度,我们建议在计算电子亲和能时用 jun-cc-pV(n+d)Z 替换 maug-cc-pV(n+d)Z,在计算原子化能时使用构建良好的等电子型反应。对于中等大小的体系,DefGrid3 RIJCOSX DLPNO-CCSD(T)-F12 计算的速度比相应的典型计算快几倍;采用局部近似 (RIJCOSX 和 DLPNO) 比采用典型计算的标度更好 (我们的测试体系中从约 6-7 降至约 2-4)。因此,DefGrid3 RIJCOSX DLPNO-CCSD(T)-F12 方法和基于该方法的 L-W1X 方案代表了一种用于获得较大体系精确热化学量的有效手段。