Schmitz Gunnar, Elm Jonas
Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark.
Department of Chemistry and iClimate, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark.
ACS Omega. 2020 Mar 23;5(13):7601-7612. doi: 10.1021/acsomega.0c00436. eCollection 2020 Apr 7.
This work assesses the performance of DLPNO-CCSD(T), DLPNO-MP2, and density functional theory methods in calculating the binding energies of a representative test set of 45 atmospheric acid-acid, acid-base, and acid-water dimer clusters. The performance of the approximate methods is compared to high level explicitly correlated CCSD(F12*)(T)/complete basis set (CBS) reference calculations. Out of the tested density functionals, ωB97X-D3(BJ) shows the best performance with a mean deviation of 0.09 kcal/mol and a maximum deviation of 0.83 kcal/mol. The RI-CC2/aug-cc-pV(T+d)Z level of theory severely overpredicts the cluster binding energies with a mean deviation of -1.31 kcal/mol and a maximum deviation up to -3.00 kcal/mol. Hence, RI-CC2/aug-cc-pV(T+d)Z should not be utilized for studying atmospheric molecular clusters. The DLPNO variants are tested both with and without the inclusion of explicit correlation (F12) in the wavefunction, with different pair natural orbital (PNO) settings (loosePNO, normalPNO, and tightPNO) and using both double and triple zeta basis sets. The performance of the DLPNO-MP2 methods is found to be independent of PNO settings and yield low mean deviations of -0.84 kcal/mol or below. However, DLPNO-MP2 requires explicitly correlated wavefunctions to yield maximum deviations below 1.40 kcal/mol. For obtaining high accuracy, with maximum deviation below ∼1.0 kcal/mol, either DLPNO-CCSD(T)/aug-cc-pVTZ (normalPNO) calculations or DLPNO-CCSD(T)-F12/cc-pVTZ-F12 (normalPNO) calculations are required. The most accurate level of theory is found to be DLPNO-CCSD(T)-F12/cc-pVTZ-F12 using a tightPNO criterion which yields a mean deviation of 0.10 kcal/mol, with a maximum deviation of 0.20 kcal/mol, compared to the CCSD(F12*)(T)/CBS reference.
本工作评估了DLPNO - CCSD(T)、DLPNO - MP2和密度泛函理论方法在计算45个大气中酸 - 酸、酸 - 碱和酸 - 水二聚体簇的代表性测试集结合能方面的性能。将这些近似方法的性能与高水平的显式相关CCSD(F12*)(T)/完备基组(CBS)参考计算进行了比较。在测试的密度泛函中,ωB97X - D3(BJ)表现最佳,平均偏差为0.09 kcal/mol,最大偏差为0.83 kcal/mol。RI - CC2/aug - cc - pV(T + d)Z理论水平严重高估了簇结合能,平均偏差为 - 1.31 kcal/mol,最大偏差高达 - 3.00 kcal/mol。因此,RI - CC2/aug - cc - pV(T + d)Z不应用于研究大气分子簇。DLPNO变体在波函数中有无包含显式相关(F12)的情况下进行了测试,采用了不同的对自然轨道(PNO)设置(loosePNO、normalPNO和tightPNO),并使用了双ζ和三ζ基组。发现DLPNO - MP2方法的性能与PNO设置无关,平均偏差较低,为 - 0.84 kcal/mol或更低。然而,DLPNO - MP2需要显式相关的波函数才能使最大偏差低于1.4 kcal/mol。为了获得高精度,最大偏差低于约1.0 kcal/mol,需要进行DLPNO - CCSD(T)/aug - cc - pVTZ(normalPNO)计算或DLPNO - CCSD(T) - F12/cc - pVTZ - F12(normalPNO)计算。发现最精确的理论水平是使用tightPNO标准的DLPNO - CCSD(T) - F12/cc - pVTZ - F12,与CCSD(F12*)(T)/CBS参考相比,平均偏差为0.10 kcal/mol,最大偏差为0.20 kcal/mol。