Lee Chiyun, Lin Junxia, Prokop Andrzej, Gopalakrishnan Vancheswaran, Hanna Richard N, Papa Eliseo, Freeman Adrian, Patel Saleha, Yu Wen, Huhn Monika, Sheikh Abdul-Saboor, Tan Keith, Sellman Bret R, Cohen Taylor, Mangion Jonathan, Khan Faisal M, Gusev Yuriy, Shameer Khader
Data Science and Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom.
Georgetown University, Washington, DC, United States.
Front Genet. 2022 May 31;13:868015. doi: 10.3389/fgene.2022.868015. eCollection 2022.
Target prioritization is essential for drug discovery and repositioning. Applying computational methods to analyze and process multi-omics data to find new drug targets is a practical approach for achieving this. Despite an increasing number of methods for generating datasets such as genomics, phenomics, and proteomics, attempts to integrate and mine such datasets remain limited in scope. Developing hybrid intelligence solutions that combine human intelligence in the scientific domain and disease biology with the ability to mine multiple databases simultaneously may help augment drug target discovery and identify novel drug-indication associations. We believe that integrating different data sources using a singular numerical scoring system in a hybrid intelligent framework could help to bridge these different omics layers and facilitate rapid drug target prioritization for studies in drug discovery, development or repositioning. Herein, we describe our prototype of the StarGazer pipeline which combines multi-source, multi-omics data with a novel target prioritization scoring system in an interactive Python-based Streamlit dashboard. StarGazer displays target prioritization scores for genes associated with 1844 phenotypic traits, and is available via https://github.com/AstraZeneca/StarGazer.
靶点优先级确定对于药物发现和重新定位至关重要。应用计算方法分析和处理多组学数据以寻找新的药物靶点是实现这一目标的实用方法。尽管生成基因组学、表型组学和蛋白质组学等数据集的方法越来越多,但整合和挖掘此类数据集的尝试在范围上仍然有限。开发将科学领域和疾病生物学中的人类智能与同时挖掘多个数据库的能力相结合的混合智能解决方案,可能有助于加强药物靶点发现并识别新的药物-适应症关联。我们认为,在混合智能框架中使用单一数字评分系统整合不同数据源有助于弥合这些不同的组学层面,并促进在药物发现、开发或重新定位研究中快速确定药物靶点的优先级。在此,我们描述了StarGazer管道的原型,该管道在基于Python的交互式Streamlit仪表板中,将多源、多组学数据与新颖的靶点优先级评分系统相结合。StarGazer显示了与1844个表型特征相关基因的靶点优先级评分,可通过https://github.com/AstraZeneca/StarGazer获取。