Key Laboratory of Adaptation and Evolution of Plateau Biota at Northwest Institute of Plateau Biology, Chinese Academy of Sciences, China.
Department of Chemical and Biological Engineering at The Hong Kong University of Science and Technology, China.
Brief Bioinform. 2021 Sep 2;22(5). doi: 10.1093/bib/bbab048.
Recent pharmacogenomic studies that generate sequencing data coupled with pharmacological characteristics for patient-derived cancer cell lines led to large amounts of multi-omics data for precision cancer medicine. Among various obstacles hindering clinical translation, lacking effective methods for multimodal and multisource data integration is becoming a bottleneck. Here we proposed DeepDRK, a machine learning framework for deciphering drug response through kernel-based data integration. To transfer information among different drugs and cancer types, we trained deep neural networks on more than 20 000 pan-cancer cell line-anticancer drug pairs. These pairs were characterized by kernel-based similarity matrices integrating multisource and multi-omics data including genomics, transcriptomics, epigenomics, chemical properties of compounds and known drug-target interactions. Applied to benchmark cancer cell line datasets, our model surpassed previous approaches with higher accuracy and better robustness. Then we applied our model on newly established patient-derived cancer cell lines and achieved satisfactory performance with AUC of 0.84 and AUPRC of 0.77. Moreover, DeepDRK was used to predict clinical response of cancer patients. Notably, the prediction of DeepDRK correlated well with clinical outcome of patients and revealed multiple drug repurposing candidates. In sum, DeepDRK provided a computational method to predict drug response of cancer cells from integrating pharmacogenomic datasets, offering an alternative way to prioritize repurposing drugs in precision cancer treatment. The DeepDRK is freely available via https://github.com/wangyc82/DeepDRK.
最近的药物基因组学研究生成了与患者来源的癌细胞系的药理学特征相结合的测序数据,为精准癌症医学产生了大量的多组学数据。在阻碍临床转化的各种障碍中,缺乏有效的多模态和多源数据集成方法正成为一个瓶颈。在这里,我们提出了 DeepDRK,这是一个通过基于核的数据集成来破译药物反应的机器学习框架。为了在不同的药物和癌症类型之间传递信息,我们在超过 20000 对泛癌症细胞系-抗癌药物对的数据集上训练了深度神经网络。这些对通过基于核的相似性矩阵进行了特征化,该矩阵整合了多源和多组学数据,包括基因组学、转录组学、表观基因组学、化合物的化学性质和已知的药物-靶标相互作用。在基准癌症细胞系数据集上应用我们的模型,其准确性更高,稳健性更好,超过了以前的方法。然后,我们将我们的模型应用于新建立的患者来源的癌细胞系,并取得了令人满意的性能,AUC 为 0.84,AUPRC 为 0.77。此外,DeepDRK 用于预测癌症患者的临床反应。值得注意的是,DeepDRK 的预测与患者的临床结果相关性良好,并揭示了多个药物再利用候选物。总之,DeepDRK 提供了一种从整合药物基因组学数据预测癌细胞药物反应的计算方法,为精准癌症治疗中重新利用药物提供了一种替代方法。DeepDRK 可通过 https://github.com/wangyc82/DeepDRK 免费获得。