Liu Shihui, Yi Xiaoqing, Wang Hao, Ye Tao, Wang Kui, Cao Wei, Guan Jing, Fan Ruiqing, Yang Yulin, Hao Sue, Xia Debin
Department of Organic Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China.
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
Front Chem. 2022 May 31;10:898320. doi: 10.3389/fchem.2022.898320. eCollection 2022.
Spiro-OMeTAD is the well-known hole transporting material (HTM) in perovskite solar cells. In this work, its derivatives, namely four D-A shaped triphenylamine or biphenylamine endcapped indenone spirofluorene (SFD-TPA, SFD-OMeTPA, SFD-TAD, and SFD-OMeTAD), were designed and synthesized. With the introduction of electron-donating moieties and the extension of conjugation length, a series of changes in photophysical and electrochemical properties could be detected. Notably, in comparison with the optical gap (2.96 eV) of the reported spiro-OMeTAD, SFD-OMeTAD presents an optical gap as low as 1.87 eV. Moreover, density functional theory simulations were employed to further investigate their geometric and electronic structures. Finally, steady-state photoluminescence measurements proved the efficient charge separation and collection processes at the perovskite/HTM interface. It can be predicted that all four compounds with enhanced sunlight absorption capability and suitable frontier energy levels can be used as hole-transporting materials for perovskite solar cells.
螺环-OMeTAD是钙钛矿太阳能电池中著名的空穴传输材料(HTM)。在这项工作中,设计并合成了其衍生物,即四种D-A型三苯胺或联苯胺封端的茚酮螺芴(SFD-TPA、SFD-OMeTPA、SFD-TAD和SFD-OMeTAD)。随着给电子基团的引入和共轭长度的延长,可以检测到光物理和电化学性质的一系列变化。值得注意的是,与报道的螺环-OMeTAD的光学带隙(2.96 eV)相比,SFD-OMeTAD的光学带隙低至1.87 eV。此外,采用密度泛函理论模拟进一步研究了它们的几何和电子结构。最后,稳态光致发光测量证明了钙钛矿/HTM界面处有效的电荷分离和收集过程。可以预测,所有四种具有增强的太阳光吸收能力和合适的前沿能级的化合物都可以用作钙钛矿太阳能电池的空穴传输材料。