Zhang Mingdao, Wang Gang, Zhao Danxia, Huang Chengyan, Cao Hui, Chen Mindong
Department of Chemistry , Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control , School of Environmental Science and Engineering , Nanjing University of Information Science & Technology , Nanjing 210044 , Jiangsu , PR China . Email:
Department of Macromolecular Science and Engineering , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , OH 44106 , USA . Email:
Chem Sci. 2017 Nov 1;8(11):7807-7814. doi: 10.1039/c7sc03543h. Epub 2017 Sep 25.
Over the past five years, perovskite solar cells (PSCs) have gained intense worldwide attention in the photovoltaic community due to their low cost and high power conversion efficiencies (PCEs). One of the most significant issues in achieving high PCEs of PSCs is the development of suitable low-cost hole-transporting materials (HTMs). Here, we put forward a new concept of HTMs for PSCs: a 3D structure with a core of coplanar quinolizino acridine, derived from the conventional concept of 2D triphenylamine HTMs. A cheaper Ag nanolayer was utilized to replace Au as the counter electrodes, and the title HTM TDT-OMeTAD was synthesized an easy four-step synthesis (total yield: 61%) to achieve the low cost and convenient manufacture of PSCs. Compared with the conventional 2D triphenylamine HTM, TTPA-OMeTPA, PSC devices based on the 3D HTM TDT-OMeTPA showed a significant improvement in PCE from 10.8% to 16.4%, even outperforming Spiro-OMeTAD (14.8%). TDT-OMeTAD's highest PCE mainly results from it having the highest open-circuit voltage () of 1.01 V in this work, which is proven to be due to the higher hole mobility, matching energy levels, higher hydrophobicity and the smaller dark current. Moreover, an incident photon-current conversion efficiency (IPCE) test and time-resolved photoluminescence (TRPL) have been carried out to observe the better hole injecting efficiency and photoelectric conversion capability of TDT-OMeTPA based PSCs than Spiro-OMeTAD. The TDT-OMeTPA based PSCs exhibited >75% reproducibility (PCE > 15%) and retained 93.2% of the initial PCE after >500 hours.
在过去五年中,钙钛矿太阳能电池(PSCs)因其低成本和高功率转换效率(PCEs)在光伏领域受到了全球的广泛关注。实现PSCs高PCEs的最重要问题之一是开发合适的低成本空穴传输材料(HTMs)。在此,我们提出了一种用于PSCs的HTMs新概念:一种以共平面喹啉吖啶为核心的三维结构,源自传统的二维三苯胺HTMs概念。使用更便宜的银纳米层代替金作为对电极,并通过简单的四步合成(总产率:61%)合成了标题HTM TDT-OMeTAD,以实现PSCs的低成本和便捷制造。与传统的二维三苯胺HTM TTPA-OMeTPA相比,基于三维HTM TDT-OMeTPA的PSCs器件的PCE从10.8%显著提高到16.4%,甚至超过了Spiro-OMeTAD(14.8%)。TDT-OMeTAD的最高PCE主要源于其在本工作中具有1.01 V的最高开路电压(),这被证明是由于更高的空穴迁移率、匹配的能级、更高的疏水性和更小的暗电流。此外,还进行了入射光子-电流转换效率(IPCE)测试和时间分辨光致发光(TRPL),以观察基于TDT-OMeTPA的PSCs比Spiro-OMeTAD具有更好的空穴注入效率和光电转换能力。基于TDT-OMeTPA的PSCs表现出>75%的重现性(PCE>15%),并且在>500小时后保留了初始PCE的93.2%。