Nishida Tomoya, Kojima Takashi, Kataoka Takahiro, Isogai Naoki, Yoshida Yoko, Nakamura Tomoaki
Nagoya Eye Clinic, Nagoya, Japan.
Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.
Clin Ophthalmol. 2022 Jun 9;16:1909-1923. doi: 10.2147/OPTH.S361836. eCollection 2022.
This study aimed to investigate the relationship between changes in corneal biomechanical properties and changes in anterior segment optical coherence tomography (AS-OCT) parameters preoperatively and following customized corneal cross-linking (C-CXL) in eyes with progressive keratoconus.
This study included 44 eyes of 44 patients (33 men, 11 women; average age 22.8 ± 6.4 years) who underwent C-CXL for progressive keratoconus. Scheimpflug-based tonometer (SBT) and AS-OCT findings were evaluated preoperatively and 3 months following CXL. Parameters related to changes in SBT parameters were examined by multiple regression analysis using the stepwise method.
Regarding SBT parameters, significant changes were observed in the integrated area under the curve of the inverse concave radius (pre, 12.19 ± 1.95/mm; post, 11.26 ± 1.89/mm; p < 0.0001), maximum inverse radius (pre, 0.24 ± 0.04/mm; post, 0.23 ± 0.04/mm; p = 0.0053), deformation amplitude ratio max 2 mm (pre, 5.53 ± 0.81; post, 5.29 ± 0.71; p = 0.0048), and stress-strain index (pre, 0.74 ± 0.16; post, 0.84 ± 0.20; p < 0.0001), pre and post C-CXL. Regarding AS-OCT parameters, significant changes were observed in average keratometry (pre, 47.87 ± 3.61 D; post, 47.56 ± 3.29 D, p = 0.0104), steep keratometry (pre, 49.61 ± 4.01 D; post, 49.25 ± 3.59 D; p = 0.0115), maximum keratometry (pre, 55.44 ± 6.22 D; post, 54.68 ± 5.56 D; p = 0.0061), and thinnest corneal thickness (pre, 450.43 ± 41.74 μm; post, 444.00 ± 39.35 μm; p < 0.0001), pre and post C-CXL. Multiple regression analysis demonstrated that when the change in the deformation amplitude (DA) ratio max (2 mm) was the dependent variable, age, change in average keratometry, and change in the thinnest corneal thickness were selected as explanatory variables. When changes in the stiffness parameter at applanation 1 and stress-strain index were the dependent variables, change in the intraocular pressure (IOP) was selected as the explanatory variable.
Change in the SBT parameters following C-CXL could be related to the age, change in the IOP value, change in average keratometry, and thinnest corneal thickness.
本研究旨在探讨进行性圆锥角膜患者术前及定制角膜交联术(C-CXL)后角膜生物力学特性变化与眼前节光学相干断层扫描(AS-OCT)参数变化之间的关系。
本研究纳入了44例(33例男性,11例女性;平均年龄22.8±6.4岁)因进行性圆锥角膜接受C-CXL的患者的44只眼。术前及CXL后3个月评估基于Scheimpflug原理的眼压计(SBT)和AS-OCT检查结果。使用逐步法通过多元回归分析检查与SBT参数变化相关的参数。
关于SBT参数,在C-CXL前后,观察到逆凹半径曲线下的积分面积(术前,12.19±1.95/mm;术后,11.26±1.89/mm;p<0.0001)、最大逆半径(术前,0.24±0.04/mm;术后,0.23±0.04/mm;p = 0.0053)、2mm最大变形幅度比(术前,5.53±0.81;术后,5.29±0.71;p = 0.0048)以及应力-应变指数(术前,0.74±0.16;术后,0.84±0.20;p<0.0001)有显著变化。关于AS-OCT参数,在C-CXL前后,观察到平均角膜曲率(术前,47.87±3.61D;术后,47.56±3.29D,p = 0.0104)、陡峭角膜曲率(术前,49.61±4.01D;术后,49.25±3.59D;p = 0.0115)、最大角膜曲率(术前,55.44±6.22D;术后,54.68±5.56D;p = 0.0061)以及最薄角膜厚度(术前,450.43±41.74μm;术后,444.00±39.35μm;p<0.0001)有显著变化。多元回归分析表明,当以最大(2mm)变形幅度(DA)比的变化作为因变量时,选择年龄、平均角膜曲率变化和最薄角膜厚度变化作为解释变量。当以压平1时的刚度参数变化和应力-应变指数作为因变量时,选择眼内压(IOP)变化作为解释变量。
C-CXL后SBT参数的变化可能与年龄、IOP值变化、平均角膜曲率变化和最薄角膜厚度有关。