Cai Baoqin, Bocola Marco, Zhou Ameng, Sun Fenshuai, Xu Qing, Yang Jiadong, Shen Tianran, Zhang Zhaoqi, Sun Lei, Ji Yaoyao, Bong Yong Koy, Daussmann Thomas, Chen Haibin
Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No.2646 East Zhongshan Road, Ningbo 31500, China.
Enzymaster Deutschland GmbH, Neusser Str. 39, Düsseldorf 40219, Germany.
Bioorg Med Chem. 2022 Aug 15;68:116880. doi: 10.1016/j.bmc.2022.116880. Epub 2022 Jun 11.
l-Threonine aldolases (LTAs) employing pyridoxal phosphate (PLP) as cofactor can convert low-cost achiral substrates glycine and aldehyde directly into valuable β-hydroxy-α-amino acids such as (2R,3S)-2-amino-3-hydroxy-3-(4-nitrophenyl) propanoic acid ((R,S)-AHNPA), which is utilized broadly as crucial chiral intermediates for bioactive compounds. However, LTAs' stereospecificity towards the β carbon is rather moderate and their activity and stability at high substrate load is low, which limits their industrial application. Here, computer-aided directed evolution was applied to improve overall activity, selectivity and stability under desired process conditions of a l-threonine aldolase in the asymmetric synthesis of (R,S)-AHNPA. Selectivity and stability determining regions were computationally identified for structure-guided directed evolution of LTA-variants under efficient biocatalytic process conditions using 40% ethanol as cosolvent. We applied molecular modeling to rationalize selectivity improvement and design focused libraries targeting the substrate binding pocket, and we also used MD simulations in nonaqueous process environment as an effective and promising method to predict potential unstable loop regions near the tetramer interface which are hot-spots for cosolvent resistance. An excellent LTA variant EM-ALDO031 with 18 mutations was obtained, which showed ∼ 30-fold stability improvement in 40% ethanol and diastereoselectivity (de) raised from 31.5% to 85% through a three-phase evolution campaign. Our fast and efficient data-driven methodology utilizing a combination of experimental and computational tools enabled us to evolve an aldolase variant to achieve the target of 90% conversion at up to 150 g/L substrate load in 40% ethanol, enabling the biocatalytic production of β-hydroxy-α-amino acids from cheap achiral precursors at multi-ton scale.
以磷酸吡哆醛(PLP)为辅因子的L-苏氨酸醛缩酶(LTA)能够将低成本的非手性底物甘氨酸和醛直接转化为有价值的β-羟基-α-氨基酸,如(2R,3S)-2-氨基-3-羟基-3-(4-硝基苯基)丙酸((R,S)-AHNPA),它被广泛用作生物活性化合物的关键手性中间体。然而,LTA对β碳的立体特异性相当一般,并且它们在高底物负载下的活性和稳定性较低,这限制了它们的工业应用。在此,应用计算机辅助定向进化来提高L-苏氨酸醛缩酶在(R,S)-AHNPA不对称合成中在所需工艺条件下的整体活性、选择性和稳定性。在以40%乙醇为助溶剂的高效生物催化工艺条件下,通过计算确定了选择性和稳定性决定区域,用于LTA变体的结构导向定向进化。我们应用分子建模来合理化选择性的提高,并设计针对底物结合口袋的聚焦文库,并且我们还在非水工艺环境中使用分子动力学模拟作为一种有效且有前景的方法,来预测四聚体界面附近潜在的不稳定环区域,这些区域是耐助溶剂的热点。通过三轮进化筛选,获得了一个具有18个突变的优秀LTA变体EM-ALDO031,其在40%乙醇中的稳定性提高了约30倍,非对映选择性(de)从31.5%提高到85%。我们利用实验和计算工具相结合的快速高效的数据驱动方法,使我们能够进化出一种醛缩酶变体,以在40%乙醇中高达150 g/L的底物负载下实现90%转化率的目标,从而能够从廉价的非手性前体以多吨规模生物催化生产β-羟基-α-氨基酸。