evocatal GmbH, Düsseldorf, Germany.
Appl Microbiol Biotechnol. 2010 Sep;88(2):409-24. doi: 10.1007/s00253-010-2751-8. Epub 2010 Aug 4.
Threonine aldolases (TAs) constitute a powerful tool for catalyzing carbon-carbon bond formations in synthetic organic chemistry, thus enabling an enantio- and diastereoselective synthesis of beta-hydroxy-alpha-amino acids. Starting from the achiral precursors glycine and an aldehyde, two new stereogenic centres are formed in this catalytic step. The resulting chiral beta-hydroxy-alpha-amino acid products are important precursors for pharmaceuticals such as thiamphenicol, a L: -threo-phenylserine derivative or L: -threo-3,4-dihydroxyphenylserine. TAs are pyridoxal-5-phosphate-dependent enzymes, which, in nature, catalyze the cleavage of L: -threonine or L: -allo-threonine to glycine and acetaldehyde in a glycine biosynthetic pathway. TAs from a broad number of species of bacteria and fungi have been isolated and characterised as biocatalysts for the synthesis of beta-hydroxy-alpha-amino acids. In this review, screening methods to obtain novel TAs, their biological function, biochemical characterisation and preparative biotransformations with TAs are described.
苏氨酸醛缩酶(TAs)是有机合成化学中催化碳-碳键形成的有力工具,因此能够对β-羟基-α-氨基酸进行对映选择性和非对映选择性合成。在这个催化步骤中,从非手性前体甘氨酸和醛开始形成两个新的手性中心。所得的手性β-羟基-α-氨基酸产物是噻孢霉素等药物的重要前体,噻孢霉素是 L: -苏氨酸衍生的氯霉素或 L: -苏氨酸-3,4-二羟基苯丙氨酸。TAs 是依赖吡哆醛-5-磷酸的酶,在自然界中,它们在甘氨酸生物合成途径中催化 L: -苏氨酸或 L: -别苏氨酸裂解为甘氨酸和乙醛。已经从许多种细菌和真菌中分离出 TAs 并将其作为生物催化剂用于β-羟基-α-氨基酸的合成进行了表征。在本文综述中,描述了获得新型 TAs 的筛选方法、它们的生物学功能、生化特性以及 TAs 的制备生物转化。