School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi'an, 710121, Shaanxi, China; Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi'an University of Posts and Telecommunications, Xi'an, 710121, Shaanxi, China; Xi'an Key Laboratory of Big Data and Intelligent Computing, Xi'an University of Posts and Telecommunications, Xi'an, 710121, Shaanxi, China.
Department of Computer Science, Aalto University, Espoo, Finland.
Neural Netw. 2022 Sep;153:120-129. doi: 10.1016/j.neunet.2022.05.025. Epub 2022 Jun 3.
Depression has been considered the most dominant mental disorder over the past few years. To help clinicians effectively and efficiently estimate the severity scale of depression, various automated systems based on deep learning have been proposed. To estimate the severity of depression, i.e., the depression severity score (Beck Depression Inventory-II), various deep architectures have been designed to perform regression using the Euclidean loss. However, they do not consider the label distribution, and they do not learn the relationships between the facial images and BDI-II scores, which can be resulting in the noisy labeling for automatic depression estimation (ADE). To mitigate this problem, we propose an automated deep architecture, namely the self-adaptation network (SAN), to improve this uncertain labeling for ADE. Specifically, the architecture consists of four modules: (1) ResNet-18 and ResNet-50 are adopted in the deep feature extraction module (DFEM) to extract informative deep features; (2) a self-attention module (SAM) is adopted to learn the weights from the mini-batch; (3) a square ranking regularization module (SRRM) to create high partitions and low partitions is proposed; and (4) a re-label module (RM) is used to re-label the uncertain annotations for ADE in the low partitions. We conduct extensive experiments on depression databases (i.e., AVEC2013 and AVEC2014) and obtain a performance comparable to the performances of other ADE methods in assessing the severity of depression. More importantly, the proposed method can learn valuable depression patterns from facial videos and obtain a performance comparable to the performances of other methods for depression recognition.
在过去的几年中,抑郁症一直被认为是最主要的精神障碍。为了帮助临床医生有效地评估抑郁症的严重程度,已经提出了各种基于深度学习的自动化系统。为了评估抑郁症的严重程度,即抑郁严重程度评分(贝克抑郁量表-II),已经设计了各种深度架构来使用欧几里得损失进行回归。然而,它们没有考虑标签分布,也没有学习面部图像和 BDI-II 分数之间的关系,这可能导致自动抑郁评估(ADE)的噪声标记。为了解决这个问题,我们提出了一种自动化的深度架构,即自适应网络(SAN),以改善 ADE 的这种不确定标记。具体来说,该架构由四个模块组成:(1)深度特征提取模块(DFEM)采用 ResNet-18 和 ResNet-50 提取信息丰富的深度特征;(2)采用自注意力模块(SAM)学习来自小批量的权重;(3)提出了一个平方排序正则化模块(SRRM)来创建高分区和低分区;(4)使用再标记模块(RM)在低分区中对 ADE 的不确定注释进行再标记。我们在抑郁症数据库(即 AVEC2013 和 AVEC2014)上进行了广泛的实验,并获得了与其他 ADE 方法评估抑郁症严重程度的性能相当的性能。更重要的是,该方法可以从面部视频中学习有价值的抑郁模式,并获得与其他抑郁识别方法相当的性能。