Artificial Intelligence Laboratory, Mayo Clinic, Rochester, Minnesota, USA; Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
Barrett's Esophagus Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.
Gastrointest Endosc. 2022 Dec;96(6):918-925.e3. doi: 10.1016/j.gie.2022.06.013. Epub 2022 Jun 17.
BACKGROUND AND AIMS: The risk of progression in Barrett's esophagus (BE) increases with development of dysplasia. There is a critical need to improve the diagnosis of BE dysplasia, given substantial interobserver disagreement among expert pathologists and overdiagnosis of dysplasia by community pathologists. We developed a deep learning model to predict dysplasia grade on whole-slide imaging. METHODS: We digitized nondysplastic BE (NDBE), low-grade dysplasia (LGD), and high-grade dysplasia (HGD) histology slides. Two expert pathologists confirmed all histology and digitally annotated areas of dysplasia. Training, validation, and test sets were created (by a random 70/20/10 split). We used an ensemble approach combining a "you only look once" model to identify regions of interest and histology class (NDBE, LGD, or HGD) followed by a ResNet101 model pretrained on ImageNet applied to the regions of interest. Diagnostic performance was determined for the whole slide. RESULTS: We included slides from 542 patients (164 NDBE, 226 LGD, and 152 HGD) yielding 8596 bounding boxes in the training set, 1946 bounding boxes in the validation set, and 840 boxes in the test set. When the ensemble model was used, sensitivity and specificity for LGD was 81.3% and 100%, respectively, and >90% for NDBE and HGD. The overall positive predictive value and sensitivity metric (calculated as F1 score) was .91 for NDBE, .90 for LGD, and 1.0 for HGD. CONCLUSIONS: We successfully trained and validated a deep learning model to accurately identify dysplasia on whole-slide images. This model can potentially help improve the histologic diagnosis of BE dysplasia and the appropriate application of endoscopic therapy.
背景与目的:巴雷特食管(BE)的进展风险随着异型增生的发展而增加。鉴于专家病理学家之间存在显著的意见分歧,以及社区病理学家对异型增生的过度诊断,迫切需要改进 BE 异型增生的诊断。我们开发了一种深度学习模型,用于预测全切片成像中的异型增生程度。
方法:我们对非异型增生 BE(NDBE)、低级别异型增生(LGD)和高级别异型增生(HGD)的组织学切片进行数字化。两位专家病理学家对所有组织学和数字标注的异型增生区域进行了确认。通过随机 70/20/10 的分割创建了训练、验证和测试集。我们使用了一种结合“只看一次”模型的集成方法来识别感兴趣区域和组织学类别(NDBE、LGD 或 HGD),然后将预训练在 ImageNet 上的 ResNet101 模型应用于感兴趣区域。
结果:我们纳入了 542 名患者的切片(164 名 NDBE、226 名 LGD 和 152 名 HGD),在训练集中产生了 8596 个边界框,在验证集中产生了 1946 个边界框,在测试集中产生了 840 个边界框。当使用集成模型时,LGD 的敏感性和特异性分别为 81.3%和 100%,对 NDBE 和 HGD 的敏感性>90%。NDBE 的总体阳性预测值和敏感性指标(计算为 F1 评分)为.91,LGD 为.90,HGD 为 1.0。
结论:我们成功地训练和验证了一种深度学习模型,用于准确识别全切片图像中的异型增生。该模型有可能有助于改善 BE 异型增生的组织学诊断和内镜治疗的合理应用。
Gastrointest Endosc. 2022-12
World J Gastroenterol. 2016-10-21
Am J Gastroenterol. 2000-12
Gastroenterology. 2011-6-30
Dis Esophagus. 2017-3-1
Gastroenterology. 2015-8-3
World J Gastroenterol. 2025-6-21
World J Gastrointest Oncol. 2025-5-15
Clin Endosc. 2025-7
Mayo Clin Proc Digit Health. 2023-8-25
Cancers (Basel). 2024-9-26
PeerJ Comput Sci. 2024-9-16
Gastroenterol Hepatol (N Y). 2024-3